• Title/Summary/Keyword: Self-optimization

Search Result 349, Processing Time 0.03 seconds

Analysis of Mobility Robustness Optimization Technology in LTE Self Organization Networks (LTE 자가구성 네트워크에서 MRO 기술 분석)

  • Yang, Mo-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1025-1030
    • /
    • 2019
  • This paper describes SON(: Self Organization Network) technology in LTE networks. The SON is a unique feature of LTE compared to previous cellular systems such as UMTS and GSM, and it is a tool that effectively derives the best performance in the time-varying wireless radio environment. Also, the SON has the ability for the operator to automate the setting of the network, allowing for centralized planning and reducing the need for manual work. The SON is largely divided into three categories: Self-Configuration, Self-Optimization, and Self-Healing. Each large categories has a detailed description of technology, and the technologies in each categories are gathered to complete the technology called the SON. In this paper, we focus on MRO which is one of the Self-Optimization technique in each of the three categories.

A Survey of Self-optimization Approaches for HetNets

  • Chai, Xiaomeng;Xu, Xu;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.1979-1995
    • /
    • 2015
  • Network convergence is regarded as the development tendency of the future wireless networks, for which self-organization paradigms provide a promising solution to alleviate the upgrading capital expenditures (CAPEX) and operating expenditures (OPEX). Self-optimization, as a critical functionality of self-organization, employs a decentralized paradigm to dynamically adapt the varying environmental circumstances while without relying on centralized control or human intervention. In this paper, we present comprehensive surveys of heterogeneous networks (HetNets) and investigate the enhanced self-optimization models. Self-optimization approaches such as dynamic mobile access network selection, spectrum resource allocation and power control for HetNets, etc., are surveyed and compared, with possible methodologies to achieve self-optimization summarized. We hope this survey paper can provide the insight and the roadmap for future research efforts in the self-optimization of convergence networks.

Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization

  • Das, Subhajit;Dhang, Nirjhar
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.345-368
    • /
    • 2020
  • The present work proposes a self-controlled multi-stage optimization method for damage identification of structures utilizing standard particle swarm optimization (PSO) algorithm. Damage identification problem is formulated as an inverse optimization problem where damage severity in each element of the structure is considered as optimization variables. An efficient objective function is formed using the first few frequencies and mode shapes of the structure. This objective function is minimized by a self-controlled multi-stage strategy to identify and quantify the damage extent of the structural members. In the first stage, standard PSO is utilized to get an initial solution to the problem. Subsequently, the algorithm identifies the most damage-prone elements of the structure using an adaptable threshold value of damage severity. These identified elements are included in the search space of the standard PSO at the next stage. Thus, the algorithm reduces the dimension of the search space and subsequently increases the accuracy of damage prediction with a considerable reduction in computational cost. The efficiency of the proposed method is investigated and compared with available results through three numerical examples considering both with and without noise. The obtained results demonstrate the accuracy of the present method can accurately estimate the location and severity of multi-damage cases in the structural systems with less computational cost.

Optimization Algorithms for Site Facility Layout Problems Using Self-Organizing Maps

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.664-673
    • /
    • 2012
  • Determining the layout of temporary facilities that support construction activities at a site is an important planning activity, as layout can significantly affect cost, quality of work, safety, and other aspects of the project. The construction site layout problem involves difficult combinatorial optimization. Recently, various artificial intelligence(AI)-based algorithms have been applied to solving many complex optimization problems, including neural networks(NN), genetic algorithms(GA), and swarm intelligence(SI) which relates to the collective behavior of social systems such as honey bees and birds. This study proposes a site facility layout optimization algorithm based on self-organizing maps(SOM). Computational experiments are carried out to justify the efficiency of the proposed method and compare it with particle swarm optimization(PSO). The results show that the proposed algorithm can be efficiently employed to solve the problem of site layout.

An Optimization Method for Self-Boring Pressuremeter Holding Test to Determine a Horizontal Coefficient of Consolidation under Partial Drained Soil Conditio (부분배수가 발생하는 지반의 수평압밀계수 결정을 위한 자가굴착식 프레셔메터 유지시험의 최적화 해석법)

  • Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.370-375
    • /
    • 2005
  • This paper describes a systematic way of identifying the horizontal coefficient of consolidation for clayey soil under undrained condition and silty soil under partial drained condition by applying an optimization technique to the early part of dissipation data measured from the self-boring pressuremeter strain holding test. An analytical solution developed by Randolph & Wroth (1979) was implemented in normalized form to express the build-up and dissipation of excess pore pressures around a pressuremeter as a function of the rigidity index. Horizontal coefficient of consolidation was determined by minimizing the differences between theoretical and measured excess pore pressure curves using optimization technique. It was found that the proposed optimization technique can evaluate in-situ horizontal coefficient of consolidation rationally, which is similar with that obtained from the piezocone dissipation test. Furthermore, proposed method can evaluate appropriate coefficient of consolidation for soil under partially drained condition.

  • PDF

Improvement of Search Efficiency in Optimization Algorithm using Self-adaptive Harmony Search Algorithms (매개변수 자가적응 화음탐색 알고리즘의 성능 비교를 통한 최적해 탐색 효율 향상)

  • Choi, Young Hwan;Lee, Ho Min;Yoo, Do Guen;Kim, Joong Hoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In various engineering fields, determining the appropriate parameter set is a cumbersome and difficult task when solving optimization problems. Despite the appropriate parameter setting through parameter sensitivity analysis, there are limits to evaluating whether the parameters are appropriate for all optimization problems. For this reason, kinds of a Self-adaptive Harmony searches have been developed to solve various engineering problems by the appropriate setting of algorithm's own parameters according to the problem. In this study, various types of Self-adaptive Harmony searches were investigated and the characteristics of optimization were categorized. Six algorithms with a differentiation of optimization process were applied and compared with not only the mathematical optimization problem, but also the engineering problem, which has been applied widely in the algorithm performance comparisons. The performance of each algorithm was compared, and the statistical performance indicators were used to evaluate the application results quantitatively.

Optimization of Environmental Parameters for Extracellular Chitinase Production by Trichoderma harzianum SJG-99721 in Bioreactor (Trichoderma harzianum SJG-99721의 체외 분비 chitinase 생산에 미치는 생물 반응기에서의 반응 최적화 연구)

  • 이호용
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.167-170
    • /
    • 2004
  • A self-directing optimization procedure was applied to determine the best environmental factors in operating the bioreactor. The self-directing optimization process was employed to determine the best conditional combination of multi parameters, pH, temperature, aeration rate and mixing rate toy maximal production of chitinase by Trichoderma harzianum SJG-99721 in batch mode fermentation. Among these factors, the parameters of pH and aeration rate were found to be particularly important on mycellial growth and chitinase activity. pH 4.89, an aeration rate of 3.22 ι per minute and an agitation rate of 225 rpm was found to be the best combination. By the optimization, chitinase activity was dramatically increased from an initial value of 4.221 U under basic conditions to n final value of 16.825 U.

Self-Sensing Composites and Optimization of Composite Structures in Japan

  • Todoroki, Akira
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.155-166
    • /
    • 2010
  • I review research on self-sensing and structural optimizations of laminated carbon/epoxy composites in Japan. Self-sensing is one of the multiple functions of composites; i.e., carbon fiber is used as a sensor as well as reinforcement. I present a controversial issue in self-sensing and detail research results. Structural optimization of laminated CFRP composites is indispensable in reducing the weights of modern aerospace structural components. I present a modified efficient global search method using the multi-objective genetic algorithm and fractal branch and bound method. My group has focused its research on these subjects and our research results are presented here.

Process Optimization for Co-based Self-flux Alloy Coating by Taguchi Method (다구찌 기법에 의한 코발트기 자융성합금 용사코팅의 최적공정 설계)

  • Lee, Jae-Hong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.108-114
    • /
    • 2013
  • This paper describes process optimization for thermal-sprayed Co-based self-flux alloy coating by Taguchi method. Co-based self-flux alloy coatings were fabricated according to $L_9(3^4)$ orthogonal array using flame spray process. Hardness test and wear test were performed, the results were analyzed by analysis of variance(ANOVA) considering a multi response signal to noise ratio(MRSN). From the results of ANOVA, the optimal combination of the flame spray parameters on Co-based self-flux alloy coating could be predicted. The calculated hardness and wear rate of the coatings by ANOVA were found to be close to that of confirmation experimental result.

Hyper-parameter Optimization for Monte Carlo Tree Search using Self-play

  • Lee, Jin-Seon;Oh, Il-Seok
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.36-43
    • /
    • 2020
  • The Monte Carlo tree search (MCTS) is a popular method for implementing an intelligent game program. It has several hyper-parameters that require an optimization for showing the best performance. Due to the stochastic nature of the MCTS, the hyper-parameter optimization is difficult to solve. This paper uses the self-playing capability of the MCTS-based game program for optimizing the hyper-parameters. It seeks a winner path over the hyper-parameter space while performing the self-play. The top-q longest winners in the winner path compete for the final winner. The experiment using the 15-15-5 game (Omok in Korean name) showed a promising result.