• Title/Summary/Keyword: Self-ignition Test

Search Result 16, Processing Time 0.027 seconds

Self-ignition of high-pressure hydrogen gas released into tube (튜브내 고압수소가스 누출에 따른 자발점화 현상 유동가시화 연구)

  • Kim, Yeong Ryeon;Lee, Hyoung Jin;Kim, Sei Hwan;Jeung, In Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.247-248
    • /
    • 2012
  • Unidentified self-ignitions were reported when the high-pressure hydrogen gas suddenly leaked out. This paper presents a flow visualization study to investigate the self-ignition mechanism in a test tube how the ignition process is initiated and the flame propagates with measurement of a number of pressure and light sensors installed in the tube supported the analysis of the self-ignition. The test result showed the location of the self-ignition taken place and critical static pressure at the boundary layer for self-ignition.

  • PDF

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

The Effect of Particle Size on Ignition Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.285-292
    • /
    • 1993
  • A cylindrical-shape, horizontal furnace was used to investigate the effect of particle size on the pulverized coal combustion behavior. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Ignition characteristics of pulverized coal flame were determined through the amount of methane in the carrier gas for the self-sustaining flame. Easiest ignition occurred with the immediately-sized coal particles. Ignition of coal jet flame appeared to occur through a gas-phase homogeneous process for particles larger than 30 microns. Below this limiting size, heterogeneous process probably dominated ignition of coal flame. Oxygen concentration of combustion air was varied up to 50%, to determine the oxygen-enrichment effect on the coal ignition behavior. Oxygen enrichment of primary air assisted ignition behavior of pulverized coal flame. However, enrichment of secondary air didn't produce any effect on the ignition behavior.

  • PDF

A Study on the Effect of Storing Temperature upon the Self Life of Propelling Charge K676 and K677 (추진장약 K676 및 K677의 저장온도가 저장수명에 미치는 영향)

  • Cho ki hong;Chang il ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.1 s.20
    • /
    • pp.14-24
    • /
    • 2005
  • A propellant mainly consisting of nitric ester including nitrocellulose, nitroglycerine and nitroguanidine is characteristic of being decomposed naturally. And this phenomenon is known as being affected mostly by its storing temperature. In this research, the effect of storing temperature on self life has been studied by measuring the contained quantity of residual stabilizer of propellant KM30A1, ignition powder and combustible cartridge case, which are parts of 155MM propelling charge K676 and K677; the method for the measurement is acceleration aging test, and decomposition reaction equation and Berthlot Equation were used for the calculation. The result of this research shows that propellant KM30A1, ignition powder, combustible cartridge case in order of decreasing self life, and the self life decreases to 1/3 as the temperature increases by $10^{\circ}C$.

Study on the Ignition of Fallen Leaves by a Cigarette Butt (담뱃불에 의한 낙엽 착화에 대한 연구)

  • Kim, Dong-Hyun;Lee, Myung-Bo
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.39-49
    • /
    • 2010
  • In order to find out the environment vulnerable to cigarette fire in which smoldering fire grows into flame fire, a cigarette combustion test and numerical analysis were performed using fallen leaves of P. densiflora and Q. variabilis. Tests were repeated five times on 2,304 conditions with four cases of fuel moisture content, six cases of velocity, two cases of cigaret location against direction of the wind, three cases of cigaret location against fallen leaves, two species of thickness of cigaret, two cases of slope conditions and two cases of fragileness of fallen leaves. Cigaret fire's flammability to the fallen leaves was monitored by analyzing heat transfer process using CFD (Computational Fluid Dynamic) under the most optimal condition through an ignition test on 2,304 conditions. The result of a cigaret fire ignition test for fallen leaves, found ignition in 197 conditions out of 2,304 conditions representing 8.6% while 13 conditions representing approximately 0.6% saw ignition across five repeated tests. The result of CFD analysis, the temperature of the bottom of fallen leaves was reached on self-ignition and pilot-ignition temperature.

The Ignition Characteristics of Dead Leaves and Living Leaves of Various Trees in Young Dong Forest Areas (영동지역 주요 수종별 낙엽과 생엽의 착화특성에 관한 연구)

  • Park, Young-Ju;Lee, Si-Young;Sin, Young-Ju;Kim, Su-Young;Kim, Young-Tak;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.298-302
    • /
    • 2008
  • In this study, we have carried out the test to examine the ignition characteristics, such as a relation of moisture content and combustibility, and ignition temperature using KRS-RG-9000 tester, living leaves and dead leaves of significant 7 species of Young Dong Provinces of Korea after and before the rainfall. After 144 hours at normal temperature, the percentage of water content of the needle-shaped leaves was less than 10%. So it is suppose to be ignite easily. On the other hand, the self-temperature to ignite of broadleaf is higher. So the retard time at lower temperature is more long than needle-shaped leaf. Consequently, the fire-resistant qualities of broadleaf is higher than needle-shaped leaf.

  • PDF

A Study on the Effect of Storing Temperature and Humidity upon the Self Life of Propellant KM30Al (추진제 KM30Al의 저장 온도/습도와 저장수명과 관계 고찰)

  • Cho, Ki-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.13-23
    • /
    • 2006
  • A propellant mainly consisting of nitric ester including nitrocellulose and nitroglycerine is characteristic of being decomposed naturally. And this phenomenon is known as being affected mostly by its storing temperature and humidity. In this research, the effect of storing temperature and humidity on self life has been studied by measuring the contained quantity of residual stabilizer of propellant KM30Al, which are parts of 155MM propelling charge K676 and K677; the method for the measurement is acceleration aging test, and decomposition reaction equation, Eyring Equation and Berthlot Equation were used for the calculation. As result of this study, it was found that the storing temperature influenced seven times as large as the storing humidity upon the self life of the propellant KM30Al, Furthermore, especially in the high temperature region, the storing temperature had a dominant effect on the self life.

A Study on the Ignition of Hydrogen-Air Mixture Gas by Spark of Rechargeable Battery (2차 전지의 방전에 의한 수소-공기 혼합가스의 점화에 관한 연구)

  • Lee Chun-Ha;Kwon Byung-Cuck;Oh Jong-ryong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.32-39
    • /
    • 2004
  • This papers describes on the experimental consideration for the intrinsically-safe explosion-proof capability of rechargeable battery's body about main item rechargeable battery and cellular phone battery which is selling in domestic that IEC(International Electrotechnical Commission) recommend the measurement of ignition limit by short circuit of rechargeable battery and temperature increase test to use a explosion grade Group IIC type of explosion-proof type apparatus test an object of hydrogen gas. Because of that there are many different results for existence or nonexistence for ignition by different company and different types. It is concluded that the maximum of self temperature increasing by spark circuit of rechargeable battery is $180^{\circ}C$ in case of Nickel-Hydrogen and $110^{\circ}C$ in case of Nickel-Cadmium. The reaction of cellular battery for external temperature have following processes. It is confirmed that the temperature of reaction is rise slantly as the ambient temperature rising, then exterior shape of one is swell up and change when the temperature of ambient reach to about $130\~140^{\circ}C$, and when reach to about $160^{\circ}C$ the battery is blown up. Therefore, it is considered that have to be in considering selection of rechargeable battery using in itself due to different ignition limits of various rechargeable battery when the portable electric containing rechargeable battery are designed, produced and used, the characteristics and the proper safety factors of devices.

A Study on Replay Experiments and Thermal Analysis for Autoignition Phenomenon of Shredded Waste Tires (폐타이어 분쇄물의 자연발화현상에 대한 재연실험 및 열분석에 관한 연구)

  • Koh, Jae Sun;Jang, Man Joon
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.99-108
    • /
    • 2012
  • These days, spontaneous ignition phenomena by oxidizing heat frequently occur in the circumstances of processing and storing waste tires. Therefore, to examine the phenomena, in this work, this researcher conducted the tests of fires of fragmented waste tires (shredded tire), closely investigated components of the fire residual materials collected in the processing and storing place, and analyzed the temperature of the starting of the ignition, weight loss, and heat of reaction. For the study, this researcher conducted fire tests with fragmented waste tires in the range of 2.5 mm to 15 mm, whose heat could be easily accumulated, and performed heat analysis through DSC and TGA, DTA, DTG, and GC/MS to give scientific probability to the possibility of spontaneous ignition. According to the tests, at the 48-hour storage, rapid increase in temperature ($178^{\circ}C$), Graphite phenomenon, smoking were observed. And the result from the DTA and DTG analysis showed that at $166.15^{\circ}C$, the minimum weight loss occurred. And, the result from the test on the waste tire analysis material 1 (Unburnt) through DSC and TGA analysis revealed that at $180^{\circ}C$ or so, thermal decomposition started. As a result, the starting temperature of ignition was considered to be $160^{\circ}C$ to $180^{\circ}C$. And, at $305^{\circ}C$, 10 % of the initial weight of the material reduced, and at $416.12^{\circ}C$, 50 % of the intial weight of the material decreased. The result from the test on oxidation and self-reaction through GC/MS and DSC analysis presented that oxidized components like 1,3 cyclopentnadiene were detected a lot. But according to the result from the heat analysis test on standard materials and fragmented waste tires, their heat value was lower than the basis value so that self-reaction was not found. Therefore, to prevent spontaneous ignition by oxidizing heat of waste tires, it is necessary to convert the conventional process into Cryogenic Process that has no or few heat accumulation at the time of fragmentation. And the current storing method in which broken and fragmented materials are stored into large burlap bags (500 kg) should be changed to the method in which they are stored into small burlap bags in order to prevent heat accumulation.

A Study on the Shelf-life Prediction of the Single Base Propellants Using Accelerated Aging Test (가속노화시험을 이용한 단기추진제의 저장수명예측에 관한 연구)

  • Lee, Jong-Chan;Yoon, Keun-Sig;Kim, Yong-Hwa;Cho, Ki-Hong
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.2
    • /
    • pp.45-52
    • /
    • 2007
  • The danger of self-ignition of single base propellants will increase with time. Therefore, a good prediction of the safe storage time is very important. In order to determine the remaining shelf-life of the propellants, the content of stabilizer is determined. The propellants stored under normal storage conditions about 10 to 18 years were investigated and accelerated aging test was carried out by storing propellant sample at higher temperature. Finally, we analyzed the results by various methods in order to show the best way to predict the realistic shelf-life. The safe storage life of the propellants will be 24 years, at least 15 years. In case of applying Arrhenius's law, using the reaction rate constant at 28$^{\circ}C$ to 30$^{\circ}C$ to predict the shelf-life by accelerated aging test is reasonable for a good prediction.