• Title/Summary/Keyword: Self-heating thermal imaging system

Search Result 2, Processing Time 0.02 seconds

Pair-Wise Serial ROIC for Uncooled Microbolometer Array

  • Haider, Syed Irtaza;Majzoub, Sohaib;Alturaigi, Mohammed;Abdel-Rahman, Mohamed
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.251-257
    • /
    • 2015
  • This work presents modelling and simulation of a readout integrated circuit (ROIC) design considering pair-wise serial configuration along with thermal modeling of an uncooled microbolometer array. A fully differential approach is used at the input stage in order to reduce fixed pattern noise due to the process variation and self-heating-related issues. Each pair of microbolometers is pulse-biased such that they both fall under the same self-heating point along the self-heating trend line. A ${\pm}10%$ process variation is considered. The proposed design is simulated with a reference input image consisting of an array of $127{\times}92$ pixels. This configuration uses only one unity gain differential amplifier along with a single 14-bit analog-to-digital converter in order to minimize the dynamic range requirement of the ROIC.

Optical imaging methods for qualification of superconducting wires

  • Kim, Gracia;Jin, Hye-Jin;Jo, William
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.21-25
    • /
    • 2014
  • In order to develop 2nd generation (2G) high-temperature superconducting (HTS) wires as commercial products, it is necessary to perform a high speed investigation of their superconducting performance. Room-temperature and non-contact optical scanning tools are necessary to verify the microstructure of the superconducting materials, the current flow below the critical temperature, and the critical current density. In this paper, we report our results of an inspection of the electrical transport properties of coated conductors. The samples that we used in our study were highly qualified rare-earth based coated conductors produced via co-evaporation, and $SmBa_2Cu_3O_{7-y}$ (SmBCO) was the superconducting materials used in our studies. A film grown on IBAD-MgO templates shows larger than 400 A/cm at 77 K and a self-field. The local transport properties of the films were investigated by room-temperature imaging by thermal heating. The room-temperature images show structural inhomogeneities on the surface of the films. Bolometric response imaging via low-temperature bolometric microscopy was used to construct the local current mapping at the surface. These results indicate that the non-uniform regions on the surface disturb the current flow, and laser scanning images at room-temperature and at a low-temperature suggest a correlation between the structural properties and transport properties. Thus this method can be effective to evaluate the quality of the coated conductors.