• Title/Summary/Keyword: Self-Tuning Gain

Search Result 47, Processing Time 0.027 seconds

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment (반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험)

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.

Analysis of Self-Pulsation Characteristics in Multi-Section Complex-Coupled DFB Lasers With Amplifying Optical Feedback (증폭된 광 귀환을 가자는 다중 전극 복소 결합 DFB 레이저에서 발생되는 self-pulsation 특성 해석)

  • Kim, Sang-Taek;Kim, Tae-Young;Kim, Boo-Gyoun;Leem, Young-Ahn;Park, Kyung-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.527-534
    • /
    • 2005
  • We investigate the pulsation characteristics in a multi-section DFB laser which is composed of one DFB section, phase tuning section, and gain section. Multi-section DFB lasers with anti-phase (AP) complex-coupled (CC) DFB structure show wide current ranges of gain and phase tuning sections fer stable pulsations compared to those with in-phase CC DFB structure or index-coupled DFB structure. For multi-section DFB lasers with AP CC DFB structure, the current range of a gain section for stable pulsations increases and the tuning range of the pulsation frequency increases as a coupling strength or a gain coupling coefficient increases Also, the tuning range using the phase variation in a phase tuning section increases. For a fixed coupling strength, the current ranges of gain and phase tuning sections for stable pulsations increase and the tuning range of the pulsation frequency increases as the length of a DFB section increases.

Self-Tuning Controller design for the motion control of a Single Rod Hydraulic Cylinder (편로드 유압실린더의 운동제어를 위한 자기동조 제어기설계)

  • 김정태;김문생
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.441-449
    • /
    • 1998
  • A self-tuning control scheme, incorporated with the simplified 1st-order ARMAX(Auto-Regressive Moving Average eXogenous) model, for single rod hydraulic cylinder which has varying dynamic characteristics is presented here. An adaptive controller is developed for the system that uses feedforward and optimal feedback control for simultaneous parameter identification and tracking control. Through experimental results, the performance comparison of the self-tuning controller with a fixed gain proportional controller clearly shows its superior ability in handling load changes in quiescent states.

  • PDF

$H_{\infty}$ Self-Tuning Control of a Flexible Link Robot with Unknown Payload (미지 부하 질량을 갖는 유연 링크 로봇의 $H_{\infty}$ 자기 동조 제어)

  • Han, Ki-Bong;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.160-168
    • /
    • 1997
  • A $H_{\infty}$self-tuning control scheme for the tip position of a flexible link robot handling unknown loads is presented here. The scheme essentially comprises a recursive least-squares identification algorithm and $H_{\infty}$self-tunning controller. The $H_{\infty}$control low is designed to be robust to uncertain parameters and the self-tunning action provides adaption to unknown parameters. Through numerical study, the performance comparison of the $H_{\infty}$self-tuning controller with a constant gain $H_{\infty}$controller as well as a LQG self-tuning controller clearly shows its superior ability in handling load changes in quiescent states.nt states.

  • PDF

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension System: Implementation and Experiment

  • Tae, Hong-Kyung;Chul, Sohn-Hyun;Ryong, Jung-Jae;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.178.4-178
    • /
    • 2001
  • In this paper a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype ...

  • PDF

Implementation of the Self-tuning Control Algorithm with an Input- amplitude Constraint (제어입력 크기가 제한되는 자기동조 제어알고리즘의 구현에 관한 연구)

  • 장효환;정회범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2153-2161
    • /
    • 1993
  • Self-tuning control algorithms for an input-amplitude constrained system are developed and implemented. Magnitude of control input for small motors is generally restricted to narrow bound due to actuator saturation. The gain-adjusted control algorithm and the bounded-gain control algorithm proposed in this study yield smoother control input variations within the magnitude constraints comparing with the existing Clarke's suboptimal control algorithm. In the gain-adjusted control algorithm, the feedforward gain is adjusted using maximum gain, while in the bounded-gain control algorithm, the feedforward gain is bounded using weighting factor. For the DC servo motor control, the system performances of the proposed algorithms are compared with those of the existing algorithm by computer simulation and experiment. It is shown that the input variations of the proposed algorithms are smoother as compared with the existing algorithm.

A study of Self-Tuning PI Speed Controller Based on Fuzzy for Permanent Magnet Linear Synchronous Motor (선형 영구자석형 동기 전동기의 Fuzzy 기반 Self-Tuning PI 속도 제어기에 관한 연구)

  • Lee Chin-Ha;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.602-611
    • /
    • 2004
  • Servo system has commonly adapted PI controller with fixed gains, because of its simplicity and determinative relationship among the parameters. The fixed gains PI system may be applied well to some operation conditions, but not non-linearities, complex and time variant operation conditions. For solving these problems, another conventional method, 'variable gun schedule according to speed', is published. The value of gain is determined according to the absolute value of the mover real speed. In this paper, FSTPIC(Fuzzy Self-Tuning PI Controller) is proposed based on various experiences to rapidly reduce speed error and to secure a good speed response characteristics. The effectiveness of proposed algorithms is demonstrated by comparing to two conventional gain systems via 4-quadrant operation.

Design of PID Type servo controller using Neural networks and it′s Implementation (신경회로망을 이용한 이득 자동조정 서보제어기 설계 및 구현)

  • 이상욱;김한실
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.229-229
    • /
    • 2000
  • Conventional gain-tuning methods such as Ziegler-Nickels methods, have many disadvantages that optimal control ler gain should be tuned manually. In this paper, modified PID controllers which include self-tuning characteristics are proposed. Proposed controllers automatically tune the PID gains in on-1ine using neural networks. A new learning scheme was proposed for improving learning speed in neural networks and satisfying the real time condition. In this paper, using a nonlinear mapping capability of neural networks, we derive a tuning method of PID controller based on a Back propagation(BP)method of multilayered neural networks. Simulated and experimental results show that the proposed method can give the appropriate parameters of PID controller when it is implemented to DC Motor.

  • PDF

High performance Control of Induction Motor using Hybrid-PI Controller (Hybrid-PI 제어기를 이용한 유도전동기의 고성능 제어)

  • Choii, Jung-Sik;Ko, Jae-Sub;Kim, Kil-Bong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.260-262
    • /
    • 2006
  • This paper presents Hybrid-PI controller of induction motor drive using fuzzy control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, Hybrid-PI controller proposes a new method based self tuning PI controller. Hybrid-PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Hybrid PI Controller of IPMSM Drive using FAM Controller (FAM 제어기를 이용한 IPMSM 드라이브의 하이브리드 PI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.192-197
    • /
    • 2007
  • This paper presents Hybrid PI controller of IPMSM drive using fuzzy adaptive mechanism(FAM) control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, Hybrid PI controller proposes a new method based self tuning PI controller. Hybrid PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.