• Title/Summary/Keyword: Self-Sustainable Valve

Search Result 3, Processing Time 0.016 seconds

Development of a Two-Step Main Oxidizer Shut-off Valve (2단계 개방 연소기 산화제 개폐밸브 개발)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.704-710
    • /
    • 2017
  • The supply of the liquid oxygen into a rocket combustor is simply controlled by the 'on' and 'off' positions of a main oxidizer shut-off valve. However, the partially opened position of a three-position valve can control and optimize the engine start transients by regulating the liquid oxygen flow rate during the start-up of the engine. In this paper, the design and performances of a three-position pneumatic poppet valve, which is intended to be employed in liquid rocket engines, have been presented.

Opening Characteristics of a Main Oxidizer Shut-off Valve (연소기 산화제 개폐밸브 개방 특성)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.989-997
    • /
    • 2017
  • We study opening transient responses of a self-sustainable poppet valve, which is usually used for the main oxidizer shut-off valve of liquid rocket engines. In order to perform numerical analysis, a pneumatic supply system was simulated as an orifice with a diameter of 3.2 mm and the equations of motion of valve moving part were derived. For the validation of the study, a comparison of numerical predictions and experimental results has been done. As one of the practical applications of this study, the employment of an orifice in a high pneumatic pressure has been presented to control the valve opening time.

Closing Characteristics of a Main Oxidizer Shut-off Valve (연소기 산화제 개폐밸브 닫힘 작동특성)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.717-724
    • /
    • 2020
  • We study the closing characteristics of a self-sustainable poppet valve which serves as a main oxidizer shut-off valve for liquid rocket engines. Numerical analysis for predicting closing transient responses are presented and the calculated results have been verified by a comparison with experimental data. The effective area of a pilot gas discharge system and the pressure distribution of passage flow around the valve moving part are shown to be main parameters in determining the closing characteristics for dry and cryogenic conditions, respectively. Moreover, it is presented that the passage flow pressure at the valve closing moment as well as the valve closing velocity can be effectively adjusted by the appropriate employment of the pilot gas.