• Title/Summary/Keyword: Self-Propelled Type

Search Result 24, Processing Time 0.02 seconds

Factorial Experiment for Drum-type Secondary Separating Part of Self-propelled Pepper Harvester

  • Nam, Ju-Seok;Kang, Young-Sun;Kim, Su-Bin;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.242-250
    • /
    • 2017
  • Purpose: This study was conducted to determine the appropriate operating conditions through a factorial experiment for the secondary separating part of the self-propelled pepper harvester. Methods: An experimental setup that simulates the secondary separating part of the self-propelled pepper harvester was organized. Test samples were classified into three types according to the number of peppers on a stem, and 12 sets were prepared for each type. Among the operating conditions of the secondary separating part, the rotational speed of drum B (four levels), radial clearance between drums and cylindrical teeth (three levels), and speed ratio between the three drums (two levels) were set as the test factors, and tests were repeated three times for different levels of each factor. The appropriate operating conditions were determined by analyzing the separation ratio and damage ratio of the peppers collected through the secondary separating part. Results: The test factors changed the overall separation ratio and overall damage ratio in similar trends. In other words, the conditions that caused high overall separation ratios also exhibited high overall damage ratios. Owing to the high overall damage ratio in the condition with the highest overall separation ratio, the operating conditions should be selected considering both ratios. Conclusions: When the condition with more than 60% of overall separation ratio and less than 15% of overall damage ratio was considered as the appropriate operating condition, 70 rpm of the rotational speed of drum B, 5 mm of the radial clearance between drums and cylindrical teeth, and 7:3:5 for the speed ratio of the three drums A, B, and C should be applied for the secondary separating part used in this study. Supplementary studies will be required in the future to find optimal operating conditions through the actual field test under further divided test factors.

Preliminary Study on the Fuel Processing with Woody Biomass (I) - Physical Properties of Wood Chip - (목질계 바이오에너지자원의 연료화를 위한 기초연구(I) - 목재칲의 물리적 특성 -)

  • Hwang, Jin-Sung;Oh, Jae-Heun;Kim, Nam-Hun;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • This study was conducted to investigate the physical properties of wood chip for fuel processing with woody biomass. Seven species are selected and processed for testing physical properties by 3-type wood chippers which are commonly used in Korea. Wood chips produced by self-propelled drum chipper and fixed type wood chipper equipped with separator were uniform in size and shape. It was shown that the bulk density of produced wood chips was decreased with increasing the wood chip layer thickness, and oak chips prepared by self-propelled drum chipper and fixed type wood chipper showed the highest bulk density.

  • PDF

Development and Performance Analysis of Self-Propelled Crawler and Gathering Type Potato Harvester (크롤러 타입 자주식 수집형 감자 수확기 개발 및 성능분석)

  • Won-Kyung Kim;Sang Hee Lee;Deok Gyu Choi;Seok Ho Park;Youn Koo Kang;Seok Pyo Moon;Chang Uk Cheon;Young Joo Kim;Sung Hyuk Jang
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.23-29
    • /
    • 2024
  • Potatoes are one of the world's four major crops, and domestic consumption is currently increasing in Korea. However, the mechanization rate of potatoes is very low, and especially, harvesting is the most labor-intensive task in potato production. In Korea, potato-collecting work depends on manpower, so it is necessary to develop a gathering-type harvester that can be used for processes from digging to harvesting. Therefore, in this study, a self-propelled-type potato harvester was developed, and its performance was analyzed to mechanize harvesting. The potato harvester was developed to have a crawler-type driving part with a 60 hp diesel engine and consisted of a digging part that digs potatoes from the ground, a vertical transporting part that transfers the dug potatoes to the height of the collection bag, a separating part that separates debris, such as stones and soil, and a collecting part that loads the collection box. A field test of the potato harvester was conducted, and performance was evaluated by the damage, loss, and debris mixing proportions, which were 2.5%, 2.8%, and 2.6%, respectively. The working capacity was 1.2 h/10 a. The economic analysis results showed that the cost of harvesting work could be reduced by 12.7% compared to manual harvesting.

Development of Self-propelled Explosive Subsoiler (2) - Construction of Prototype and Performance Evaluation - (자주식 심토환경 개선기 개발(2) - 본체 제작 및 성능 평가 -)

  • Lee, Dong-Hoon;Park, Woo-Pung;Kim, Sang-Cheol;Lee, Kyou-Seung
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.404-410
    • /
    • 2009
  • This study was carried out to develop a self-propelled type explosive subsoiler for improving the root zone soil conditions in orchard and other forest fields. Prototype was designed to be able to inject air and other soil improving material such as lime into soil at the same time, and thus improve the air permeability and drainage of orchard soils to promote the root growth of tree for high quality fruit production. Soil penetration device of explosive subsoiler is composed of air hammer, penetration rob and air injection nozzle. To support the soil penetration device of explosive subsoiler to penetrate vertically, modified Scott-Russel mechanism was used. Timing control device for simultaneous injection of soil improving material with air was attached to the out side wall of air cylinder and as the cylinder move, the soil improving material was injected into soil at the same time. Turning radius of prototype was 2.2-2.3 m with good mobility in sloped land. It took approximately 1 minute for lime injection system to reach the optimum pressure of 9.9 kg/$cm^2$, average 10-20 seconds were required to rupture soil with the depth of 50 cm and 2-3 seconds were required for explosion, so all in all about 1 minute and 20 seconds were required for one cycle of explosion. Maximum soil rupture depth and diameter were 50 cm and 3-4 m respectively depending on the soil type and soil moisture content. For final design of explosive subsoiler inclination angle of lime hopper was increased from 60 degree to 70 degree and the shape of hopper was changed from rectangular cone to circular cone to solve the clogging problem of lime at out let. Agitating system operated by compressed air was attached to the metering device of the prototype, thus more than 90 cc of lime was discharged per cycle from metering device without clogging problems.

A Study on the Improvement of Anti-Fire System of Temples (사찰 화재예방시스템의 개선방안에 관한 연구)

  • Kong, Ha-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.87-90
    • /
    • 2008
  • This research is to study and analyze our country's management of disasters, the present condition of cultural heritages bases on the examples of temples, and Japan's safety management prevention of buddhist temple. As a result, this research aims to how to improve the temple fire prevention system. To improve the anti-fire system of temples, it is important to make new laws about fire lose to minimize cultural property lose. Secondly, to protect self-contained type fire alarm device, with aerosol type hand propelled fire extinguishers to prevent fire lose. Lastly, construction work of electric engineer is necessary to prevent temple fire loses.

Tribological Characteristics of Endoscope Capsule Inside of Small Intestine (캡슐형 내시경 개발을 위한 소장 내에서의 캡슐저항력 특성)

  • 백남국;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.142-145
    • /
    • 2002
  • In order to develop a self-propelled microendoscope, the frictional resistance of the capsule-type endoscope inside the intestine should be understood. In this work the frictional resistance behaviors of capsules with different designs were experimentally investigated using a pig intestine. It was found that cylindrical capsule design had the least frictional resistance. Also, the resistance increased as the speed of the capsule motion was decreased. It is expected that the results of this work will be used to design the optimum propulsion system for the microendoscope.

  • PDF

A Study on the Increase of the Reliability of the Flick Rammer on K-55A1 Self Propelled Artillery (K-55A1 자주포 급속장전장치의 장전신뢰성 향상에 관한 연구)

  • Na, Ra-Byeol;Kim, Byung-Hyun;Lee, Ju-Seung;Kim, Byeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.62-68
    • /
    • 2018
  • This study was conducted to improve the shooting stability of self propelled artillery by improving the flick rammer system. The flick rammer system is designed to reduce crew fatigue and shorten the movement and loading time of the shell compared with the conventional manual loading system. Basically, in the flick rammer system of the shooting type, fall-back occurs intermittently, which causes problems in the rapid loading. To solve this problem, a detailed C.A.E. (Computer Aided Engineering) analysis of the internal structure of the existing rapid loading field was conducted. Through this, we sought a solution that can prevent fall-back by reducing the flying distance. We then optimized the loading station to reduce the flying distance and confirmed the possibility of suppressing the fall-back compared to the existing product through actual tests in the field.

Study on Optimal Working Conditions for Picking Head of Self-Propelled Pepper Harvester by Factorial Test

  • Kang, Kyung-Sik;Park, Hoon-Sang;Park, Seung-Je;Kang, Young-Sun;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.12-20
    • /
    • 2016
  • Purpose: Pepper prices have risen continuously because of a decrease in cultivation area; therefore, mechanical harvesting systems for peppers should be developed to reduce cost, time, and labor during harvest. In this study, a screw type picking head for a self-propelled pepper harvester was developed, and the optimal working conditions were evaluated considering helix types, winding directions of helix, and rotational speeds of the helix. Methods: The screw type was selected for the picking head after analyzing previous studies, and the device consisted of helices and a feed chain mechanism for conveying pepper branches. A double helix and a triple helix were manufactured, and rotational speeds of 200, 300, and 400 rpm were tested. The device was controlled by a variable speed (VS) motor and an inverter. Both the forward and reverse directions were tested for the winding and rotating directions of the helix. An experiment crop (cultivar: Longgreenmat) was cultivated in a plastic greenhouse. The test results were analyzed using the SAS program with ANOVA to examine the relationship between each factor and the performance of the picking head. Results: The results of the double and triple helix tests in the reverse direction showed gross harvest efficiency levels of 60-95%, mechanical damage rates of 8-20%, and net marketable portion rates of 50-80%. The dividing ratio was highest at a rotational speed of 400 rpm. Gross harvest efficiency was influenced by the types of helix and rotational speed. Net marketable portion was influenced by rotational speed but not influenced by the type of helix. Mechanical damage was not influenced by the type of helix or rotational speed. Conclusions: Best gross harvest efficiency was obtained at a rotational speed of 400 rpm; however, operating the device at that speed resulted in vibration, which should be reduced.

Improving Hydraulic System Design by Analysis Model of a Self-propelled Spinach Harvester (자주식 시금치 수확장치 해석모델을 활용한 유압시스템 개선 설계 제안)

  • Noh, Dae Kyung;Lee, Dong Won;Lee, Jong Su;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.69-75
    • /
    • 2022
  • This study aimed to develop solutions for the intermittent performance deterioration of self-propelled spinach harvesters through analysis model. The study was conducted in the following manner. First, changes in performance deterioration and surplus flow, which result from oil temperature changes, were analyzed by simulating actual sequential harvesting movements, which involve driving with actuators operated simultaneously, by analysis model developed in a previous study. Second, fundamental solutions for surplus flow problems were presented. Third, the solutions were applied to a virtual environment to present their practicality and quantitative effects. The two solutions based on the study results were as follows. First, a closed center-type directional control valve was applied to the hydraulic circuit. Second, an unloading system was set up through an on-off solenoid valve.

Development of Self-propelled Explosive Subsoiler (1) - Present Status of Soil Compaction and Subsoil Management in Orchard - (자주식 심토환경 개선기 개발(1) - 과수원의 토양 다짐 특성 및 심토 관리 실태 -)

  • Lee, Dong-Hoon;Park, Woo-Pung;Lee, Kyou-Seung
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.397-403
    • /
    • 2009
  • This study was carried out to investigate the present status of subsoil compaction, and subsoil compaction management in orchard as a basic study for developing a self-propelled explosive subsoiler. Subsoil compaction was evaluated using the soil penetration resistance. Soil cone index was measured using the DIK 5520 type cone penetrometer in several fruit farms such as apple, pear, peach and grapes during growing seasons of these fruit in Jecheon, Gamgok, Choongju, Cheonan and Hwasung areas. Most of the subsoil managing machinery were either explosive type or digging type attached to the tractor or power tiller and turning radius of this machine was more than 3-5 m. Many of the farmers wanted to use the subsoiler which can put lime into soil and rupture soil at the same time. For most of the orchard fields, soil penetration resistance in vehicle traffic area was increased quickly and reached about 1.0 MPa in 5 cm soil depth. As the soil depth increased to 15-20 cm, cone penetration resistance reached about 2.0-2.5 MPa which restricted root growth seriously. Thus it was concluded that one of the main reason for increasing the soil compaction in orchard fields is agricultural vehicle traffic. In the vicinity of fruit trees, compaction is not so serious compared to that of the vehicle traffic area, but as the soil depth increased to 20-25 cm, in most of the orchard fields soil penetration resistance reached about 2.0-2.5 MPa which is the root growth-limiting value. Considering the rooting depth of fruit trees which ranged 30-60 cm for apple, pear and peach, and 20-30 cm for grape, it is necessary to loosen the subosoil and improve the subsoil conditions using subsoiler.