• Title/Summary/Keyword: Self-Piercing Riveting

Search Result 14, Processing Time 0.016 seconds

Fatigue Strength Evaluation of Self-Piercing Riveted Al-5052 Joints (셀프 피어싱 리베팅한 Al-5052 접합부의 피로강도 평가)

  • Kang, Se Hyung;Hwang, Jae Hyun;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • Self-piercing riveting (SPR) is receiving more recognition as a possible and effective solution for joining automotive body panels and structures, particularly for aluminum parts and dissimilar parts. In this study, static strength and fatigue tests were conducted using coach-peel and cross-tension specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. For the static experiment results, the fracture modes are classified into pull-out fracture due to influence of plastic deformation of joining area. During the fatigue tests for the coach-peel and cross-tension specimens with Al-5052, interface failure mode occurred on the top substrate close to the rivet head in the most cycle region. There were relationship between applied load amplitude $P_{amp}$ and life time of cycle N, $P_{amp}=715.5{\times}N^{-0.166}$ and $P_{amp}=1967.3{\times}N^{-0.162}$ were for the coach-peel and cross- tension specimens, respectively. The finite element analysis results for specimens were adopted for the parameters of fatigue lifetime prediction. The relation between SWT fatigue parameter and number of cycles was found to be $SWT=192.8N_f^{-0.44}$.

DEVELOPMENT OF THE JOINING PROCESSES IN A GLOBAL PERSPECTIVE

  • Pekari, Bertil
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.1-14
    • /
    • 2002
  • There is a continuous development of the most common welding processes like MMA, MIG/MAG, PAW and SAW. At the same time there is a conversion from stick electrodes to solid and cored wires with an increased productivity as a result. In parallel with these changes new processes are introduced and implemented. The number of Friction Stir Welding installations is starting to grow fast Hybrid laser welding has probably made a technical break through. The Magnetic Pulse Welding process is taking off. The different mechanical joining methods; clinching and self-piercing riveting; must not be forgotten. Structural adhesive is another method to consider.

  • PDF

Assessment of Fatigue Properties of SPR Jointed Various Specimens Using Finite Element Method (FEM을 이용한 셀프-피이싱 리벳접합 형태에 따른 피로특성 평가)

  • Im Bok-Gyu;Kim Jae-Cheol;Lee Gi-Yeol;Sin Su-Hyeon;Choi Yeong-U;Kim Dae-Il;Kim Deok-Hwan;Kim Myeong-Chan
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.310-312
    • /
    • 2006
  • Self-piercing riveting(SPR) is becoming an important joining technique for automotive application of various material sheets and shapes. Fatigue behavior of SPR conections needs to be investigated experimentally and numerically to predict SPR fatigue lives. The simulations of various SPR specimens (Coach-Peel specimen, Cross-Tension specimen, Tensile-Shear specimen, Pure-Shear specimen) are performed to predict the fatigue life of SPR connections under different material combinations. Finite element models of various SPR specimens are developed using a FEMFAT SPOT SPR pre-processor. The fatigue lives of SPR specimens are predicted using a FEMFAT 4.4e based on the liner finite element analysis.

  • PDF

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.