• Title/Summary/Keyword: Self-Organizing Polynomial Neural Networks (SOPNN)

Search Result 6, Processing Time 0.022 seconds

Genetically Optimized Self-Organizing Polynomial Neural Networks (진화론적 최적 자기구성 다항식 뉴럴 네트워크)

  • 박호성;박병준;장성환;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.40-49
    • /
    • 2004
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Self-Organizing Polynomial Neural Networks(SOPNN), discuss a comprehensive design methodology and carry out a series of numeric experiments. The conventional SOPNN is based on the extended Group Method of Data Handling(GMDH) method and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons (or nodes) located in each layer through a growth process of the network. Moreover it does not guarantee that the SOPNN generated through learning has the optimal network architecture. But the proposed GA-based SOPNN enable the architecture to be a structurally more optimized network, and to be much more flexible and preferable neural network than the conventional SOPNN. In order to generate the structurally optimized SOPNN, GA-based design procedure at each stage (layer) of SOPNN leads to the selection of preferred nodes (or PNs) with optimal parameters- such as the number of input variables, input variables, and the order of the polynomial-available within SOPNN. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. A detailed design procedure is discussed in detail. To evaluate the performance of the GA-based SOPNN, the model is experimented with using two time series data (gas furnace and NOx emission process data of gas turbine power plant). A comparative analysis shows that the proposed GA-based SOPNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

The Architecture and Identification Algorithm of Self-Organizing Polynomial Neural Networks by GAs (유전자 알고리즘에 의한 자기구성 다항식 뉴럴 네트워크의 구조 및 동정 알고리즘)

  • 박호성;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.434-437
    • /
    • 2004
  • 본 논문에서는 유전자 알고리즘에 기반을 둔 자기구성 다항식 뉴럴네트워크(Self-Organizing Polynomial Neural Networks: SOPNN)의 새로운 구조를 제안하고, 포괄적인 설계 방법론을 토의한다. 기존의 자기구성 다항식 뉴럴 네트워크는 확장된 GMDH 방법에 기반을 두며, 네트워크의 성장과정을 통하여 각 충의 다항식 뉴런에서 고정된 노드 입력들의 수 뿐만 아니라 다항식 차수(1차, 2차, 그리고 수정된 2차식)를 이용하였다. 더구나, 그 방법은 학습을 통해 생성된 SOPNN이 최적 네트워크 구조를 가진다는 것을 보증하지 못한다. 그러나, 제안된 GA 기반 SOPNN은 그 구조를 구조적으로 더 최적화된 네트워크가 되도록 하고, 기존의 SOPNN보다 훨씬 더 유연하고, 선호된 뉴럴 네트워크가 되도록 한다. 구조적으로 더 최적화된 SOPNN을 생성하기 위해, SOPNN의 각 단계에서의 GA기반 설계 절차는 SOPNN내에서 이용할 수 있는 다음의 최적 파라미터들- 즉 입력변수의 수, 입력변수, 및 다항식 차수-을 가진 선호된 노드들의 선택으로 이끈다. 하중계수를 가진 합성성능지수가 그 모델의 근사화 및 일반화(예측) 능력 사이의 상호 균형을 얻기 위해 제안된다. 상세 설계 절차가 상세히 토의된다.

  • PDF

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.

Fuzzy and Polynomial Neuron Based Novel Dynamic Perceptron Architecture (퍼지 및 다항식 뉴론에 기반한 새로운 동적퍼셉트론 구조)

  • Kim, Dong-Won;Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2762-2764
    • /
    • 2001
  • In this study, we introduce and investigate a class of dynamic perceptron architectures, discuss a comprehensive design methodology and carry out a series of numeric experiments. The proposed dynamic perceptron architectures are called as Polynomial Neural Networks(PNN). PNN is a flexible neural architecture whose topology is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated on the fly. In this sense, PNN is a self-organizing network. PNN has two kinds of networks, Polynomial Neuron(FPN)-based and Fuzzy Polynomial Neuron(FPN)-based networks, according to a polynomial structure. The essence of the design procedure of PN-based Self-organizing Polynomial Neural Networks(SOPNN) dwells on the Group Method of Data Handling (GMDH) [1]. Each node of the SOPNN exhibits a high level of flexibility and realizes a polynomial type of mapping (linear, quadratic, and cubic) between input and output variables. FPN-based SOPNN dwells on the ideas of fuzzy rule-based computing and neural networks. Simulations involve a series of synthetic as well as experimental data used across various neurofuzzy systems. A detailed comparative analysis is included as well.

  • PDF

A new Design of Granular-oriented Self-organizing Polynomial Neural Networks (입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

A New Design Approach for Optimization of GA-based SOPNN (GA 기반 자기구성 다항식 뉴럴 네트워크의 최적화를 위한 새로운 설계 방법)

  • Park, Ho-Sung;Park, Byoung-Jun;Park, Keon-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2627-2629
    • /
    • 2003
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Self-Organizing Polynomial Neural Networks(SOPNN). The conventional SOPNN is based on the extended Group Method of Data Handling(GMDH) method and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons (or nodes) located in each layer through a growth process of the network. Moreover it does not guarantee that the SOPNN generated through learning has the optimal network architecture. But the proposed GA-based SOPNN enable the architecture to be a structurally more optimized networks, and to be much more flexible and preferable neural network than the conventional SOPNN. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented with using nonlinear system data.

  • PDF