• Title/Summary/Keyword: Self-Corrosion

Search Result 112, Processing Time 0.025 seconds

Evaluation on the Rlationship between Wear Ratio and Polarization Characteristics of Anti-Fouling Paint (방오도료 도막의 마모율과 분극특성의 상관관계에 관한 평가)

  • Jeong, Jae-Hun;Moon, Kyung-Man;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae;Kim, Hyun-Myung;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • Recently, anti-fouling paints which does not include the poison components such as tin(Sn), copper(Cu) have been increasingly developed in order to inhibit the environmental contamination of the sea water. Moreover, the wear ratios of these anti-fouling paints are very important problem to prolong their life time in economical point of view. In this study, five types of anti-fouling paints as self polishing type were investigated on the relationship between their polarization characteristics and wear ratios. It was verified that there was apparently a good relationship between the wear ratio and polarization characteristics, for example, the wear ratio increased with increasing the impedance ratio, and increased or decreased with the corrosion potential shifting in the negative or positive direction respectively. In addition, the wear ratio decreased with decreasing the corrosion current density. Consequently, it is suggested that we can qualitatively expect the wear ratio by only measuring the polarization characteristics. Therefore, before the examination of the wear ratio was actually carried out in the field, the evaluation of polarization property in the laboratory may give a available reference data for their developments.

Effect of the change of second phase hardness on corrosion fatigue behavior of dual phase steel in 3% nacl solution (3% NaCl 수용액중에서 복합조직강의 부식피로거동에 미치는 제2상 속도변화의 영향)

  • 오세욱;김웅집
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.85-93
    • /
    • 1992
  • The only hardness of 2nd phase of martensite in dual phase steel which was composed of the martensite and ferrite was changed. Fatigue test was conducted by cantilever type of self-made rotated bending fatigue testing machine. The corrosion fatigue fracture behaviors of dual phase steel were investigated in 3% NaCl solution at $N_f$ = $1.5\times$$10^5$ $N_f$=1.0 $\times$ $10^6$ cycles. The fatigue strength was increased with increasing the hardness of 2nd phase. The size and number of corrsion pits were influenced by the 2nd phase hardness and pits remain constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of $\Delta$K and da/dn has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the higher the corrosion fatigue life becomes. Corrosion fatigue fracture behavior was effected by mechanics in case of $N_f$=1.5$\times$10$^5$$N_f$=1.5$\times$10$^6$ cycles.

  • PDF

Effect of Temperature Conditions on Electrochemical Properties for Zinc-Air Batteries (온도조건에 따른 아연-공기 전지의 전기화학적 특성)

  • Lee, Ju Kwang;Jo, Yong Nam
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.687-692
    • /
    • 2020
  • A zinc-air battery consists of a zinc anode, an air cathode, an electrolyte, and a separator. The active material of the positive electrode is oxygen contained in the ambient air. Therefore, zinc-air batteries have an open cell configuration. The external condition is one of the main factors for zinc-air batteries. One of the most important external conditions is temperature. To confirm the effect of temperature on the electrochemical properties of zinc-air batteries, we perform various analyses under different temperatures. Under 60 ℃ condition, the zinc-air cell shows an 84.98 % self-discharge rate. In addition, high corrosion rate and electrolyte evaporation rate are achieved at 60 ℃. Among the cells stored at various temperature conditions, the cell stored at 50 ℃ delivers the highest discharge capacity; it also shows the highest self-discharge rate (65.33 %). On the other hand, the cell stored at 30 ℃ shows only 2.28 % self-discharge rate.

Effects of Electrolyte Concentration on Electrochemical Properties of Zinc-Air Batteries (전해질 농도에 따른 아연-공기 전지의 전기화학적 특성)

  • Han, Ji Woo;Jo, Yong Nam
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.798-803
    • /
    • 2019
  • The self-discharge behavior of zinc-air batteries is a critical issue induced by corrosion and hydrogen evolution reaction (HER) of zinc anode. The corrosion reaction and HER can be controlled by a gelling agent and concentration of potassium hydroxide (KOH) solution. Various concentrations of KOH solution and polyacrylic acid have been used for gel electrolyte. The electrolyte solution is prepared with different concentrations of KOH (6 M, 7 M, 8 M, 9 M). Among studied materials, the cell assembled with 6 M KOH gel electrolyte exhibits the highest specific discharge capacity and poor capacity retention. Whereas, 9 M KOH gel electrolyte shows high capacity retention. However, a large amount of hydrogen gas is evolved with 9 M KOH solution. In general, the increase in concentration is related to ionic conductivity. At concentrations above 7 M, the viscosity increases and the conductivity decreases. As a result, compared to other studied materials, 7 M KOH gel electrolyte is suitable for Zn-air batteries because of its higher capacity retention (92.00 %) and specific discharge capacity (351.80 mAh/g) after 6 hr storage.

Protection of STS304 Steel with Photo-Functional Material $TiO_2$ Coating (광기능성 재료 $TiO_2$ 피막에 의한 STS304강의 방식)

  • Nam, Ki-Woo;Lee, Sung-Yeon;Ahn, Seok-Hwan;Kim, Jong-Soon;Park, In-Duck
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.307-311
    • /
    • 2002
  • This study was investigated the photoelectrochemical behavior of STS304 steel with $TiO_2$ thin films coating, applied by sol-gel method, for the purpose of cathodic photoprotection of the steel corrosion. One time $TiO_2$-coated STS304 steel adopted two kinds of $TiO_2$ sol solution has the most dominant photopotential abilities, which was -200mV vs. SCE and -500mV vs. SCE under illumination with 40W fluorescent lamp, respectively. That was more negative than the corrosion potential of the bare metal(-150 mV). The bleaching of TCE was confirmed on $TiO_2$-coated STS304 under UV-illumination with 20 W Black-light. This Study was concluded that $TiO_2$-coated STS304 exhibited both a cathodic photoprotection effect against corrosion and photocatalytic self-cleaning effect.

  • PDF

Manufacturing technology of two-layer self bonding insulating tape (이중절연 자기융착테이프 제조기술)

  • 조용석;이철호;심대섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.890-893
    • /
    • 2001
  • Two-layer self bonding insulating tape consists of butyl rubber(IIR ; Isobutylene-isoprene rubber) adhesive layer and polyethylene protective film. Butyl rubber have inherent characteristics such as resistance to corrosion and water, low temperature flexibility, excellent electrical insulating properties also resistance to environmental effect such as ozone and ultraviolet. Polyethylene film was used for the purpose of good insulating properties and resistance to ozone and ultraviolet. The tape was manufactured using extrusion and calender method.

  • PDF

Effect of Solution-treated on Electrochemical Properties of AZ91 Magnesium Alloy Anode

  • Zhiquan, Huang;Yanjie, Pei;Renyao, Huang;Xiangyu, Gao;Jinchao, Zou;Lianyun, Jiang
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.486-496
    • /
    • 2022
  • The effect of solution-treated on the self-corrosion performance and discharge performance of AZ91 magnesium alloy as anode material was analyzed by microscopic characterization, immersion tests, electrochemical measurements, and discharge performance tests. The study shows that the β-phase in the AZ91 magnesium alloy gradually dissolved in the matrix with the increase of the solution temperature, and the electrochemical activity of the magnesium alloy anode was significantly improved. Through the comparison of three different solution-treated processes, it is found that the AZ91 magnesium alloy has the most vigorous activity and better discharge performance after solution-treated of 415℃+12 h. In addition, the proportion and distribution of β-phase AZ91 magnesium alloy have a direct impact on its discharge performance as an anode material.

Electrical Resistance Characteristics of Conductive Cement Composite with Deterioration Damage (열화손상이 발생된 전도성시멘트복합체의 전기저항특성)

  • Kim, Young-Min;Lee, Gun Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.149-150
    • /
    • 2020
  • Granting self-sensing performance in a building is an important performance to ensure the degree of damage and safety of the building. Since the current research is being conducted in the state before deterioration loss occurs, it is necessary to confirm whether the self-sensing performance is maintained even in the damaged conductive cement composite. As part of the study, electrical resistance characteristics were analyzed in conductive cement composites in which freeze-thawing and chemical corrosion occurred. As a result, it was found that the change in electrical resistance value due to freeze-thawing was not as large as 1%, and chemical corrosion occurred. It was found that the change in electrical resistance value of the tested specimen increased by about 10%.

  • PDF

Replacements for Chromate Pigments in Anticorrosion Primers for Aluminum Alloys

  • Yin, Zhangzhang;Ooij, Wim van;Puomi, Paula
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.206-210
    • /
    • 2007
  • Aerospace aluminum alloys such as Al alloy 2024-T3 and 7075-T6 are subject to localized corrosion due the existence of intermetallics containing Cu, Mg or Zn. Chromate is currently widely used in the aerospace industry as the corrosion inhibitor for these alloys. However, chromate needs to be replaced due to its strong carcinogenicity. In this study, an extensive pigment screening has been performed to find replacements for chromates. Different categories of inhibitors were evaluated by immersion tests, DC polarization tests and other methods. Phosphates, zinc salts, cerium salts, vanadates and benzotriazole were found to be effective inhibitors for AA7075. Among those inhibitors, zinc phosphate was found to be the most effective in our novel, silane-based, one-step aqueous primer system. The performance of this primer is comparable to that of currently used chromate primers in accelerated corrosion tests, while it is completely chromate-free and its VOC is about 80% less than that of current primers. Studies by SEM/EDS showed that the unique structure of the superprimer accounts for the strong anti-corrosion performance of the zinc phosphate pigment. The self-assembled stratified double-layer structure of the superprimer is characterized by a less-penetrable hydrophobic layer at the top and a hydrophilic layer accommodating the inhibitors underneath. The top layer functions as the physical barrier against water ingress, while the lower layer functions as a reservoirfor the inhibitor, which is leached out only if the coating is damaged by a scratch or scribe. The presence of a silane in the primer further improves the adhesion and anti-corrosion performance of the primer.

Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

  • Jo, Du-Hwan;Noh, Sang-Geol;Park, Jong-Tae;Kang, Choon-Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.213-217
    • /
    • 2015
  • Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.