• Title/Summary/Keyword: Self healing repair mortar

Search Result 5, Processing Time 0.02 seconds

An Experimental Study on the Quality and Crack Healing Characteristics of Repair Mortar Containing Self-Healing Solid Capsules of Crystal Growth Type (결정성장형 자기치유 고상캡슐을 혼합한 보수 모르타르의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon;Choi, Yun-Wang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, self - healing solid capsules of crystal growth type which can be mixed directly with repair mortar were prepared, and the quality and crack healing performance of repair mortar with self - healing solid capsules were evaluated. The table flow and the air flow rate of the repair mortar material mixed with self-healing solid capsules were found to have no significant influence on table flow and air volume regardless of mixing ratio. Compressive strength tended to decrease with increasing capsule mixing ratio. As a result of evaluation of crack healing properties according to constant water head permeability test, initial water permeability decreased, and reaction products were generated over time and cracks were healed.

Development of Crack Monitoring System for Self-healing Repair Mortar Surface Using Image Processing Technique (이미지 처리 기법을 이용한 자기치유 보수 모르타르 시공표면의 균열 모니터링 시스템 개발)

  • Oh, Sang-Hyuk;Moon, Dae-Jung;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.359-366
    • /
    • 2021
  • In this study, It was developed an monitoring cracks system based on image processing techniques in order to measure cracks, which are major damages in concrete, and to convert them into a database. The crack monitoring system consists of crack image captured equipment and a crack detection and analysis software. This system provides objective and quantitative data by replacing the conventional visual inspection. The crack detection algorithm w as verified through an indoor test using virtual cracks, and the amount of crack detection and crack width change was monitored by applying it to the self-healing repair mortar construction site. In the case of the crack width detected through image analysis, the maximum difference from the actual crack width was 0.0334mm. It was possible to detect microcracks of 0.1mm or less, and the effect of crack healing over time of the self-healing repair mortar was confirmed trough the field test.

Influence of Exposure Environmental Conditions on the Crack Healing Performance of Self-healing Repair Mortar Specimens (노출환경 조건이 자기치유형 보수 모르타르 시험체의 균열 치유성능에 미치는 영향)

  • Lee, Woong-Jong;Lee, Hyun-Ho;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.283-288
    • /
    • 2018
  • Since the crack self-healing materials are activated according to the exposure environmental conditions from the time of crack occurrence, it is very important to clarify the relationship between the healing performance and the exposure environmental conditions of the crack surface. In this paper, the influence of the exposure environmental conditions on the crack healing performance of self-healing repair mortar was investigated through the water permeability test. The influence of temperature and humidity on the crack width of cracked specimens was evaluated. As a result of measuring the change of the crack width, the effect of curing temperature was negligible but it was confirmed that crack-closing occurred due to the change of dry-wet condition. The healing materials produced on the crack surface of the specimens was identified as calcite minerals. Since the minerals with high density are precipitated under the influence of gravity, the healing performance is somewhat different according to the direction of the crack surface, and the healing performance was significantly improved in the wet exposure condition than the air exposure condition.

Experimental Study on the Manufacturing and Waterproofing Properties of Self-healing Concrete Waterproofing Agent Using Microcapsules (마이크로캡슐을 활용한 자기치유 구체방수제의 제조 및 방수특성에 관한 실험적 연구)

  • Yun-Wang Choi;Jae-Heun Lee;Neung-Won Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.289-298
    • /
    • 2023
  • In this study, the development of a self-healing concrete waterproofing agent was examined, focusing on its manufacturing and waterproofing properties. The optimal ratio using microcapsules for the concrete waterproofing agent was determined through assessments of flow, compressive strength, and permeability conducted during the mortar stage. These findings aimed to provide fundamental data for evaluating the self-healing properties of the concrete waterproofing agent designed for use in concrete structures. The self-healing concrete waterproofing agent was comprised of three types of inorganic materials commonly used for repair purposes. From experimental results, a composition ratio with a high potassium silicate content, referred to as SIM-2, was found suitable. A surfactant mixing ratio of 0.03 % was identified to enhance the dispersibility of the concrete waterproofing agent, while a mixing ratio of 0.2 % distilled water was deemed suitable for viscosity adjustment. For the magnetic self-healing concrete waterproofing agent's healing agent, using microcapsules in the range of 0.5 % to 0.7 % met the KS F 4949 and KS F 4926 standards.

Complete Genome and Calcium Carbonate Precipitation of Alkaliphilic Bacillus sp. AK13 for Self-Healing Concrete

  • Jung, Yoonhee;Kim, Wonjae;Kim, Wook;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.404-416
    • /
    • 2020
  • Bacteria that are resistant to high temperatures and alkaline environments are essential for the biological repair of damaged concrete. Alkaliphilic and halotolerant Bacillus sp. AK13 was isolated from the rhizosphere of Miscanthus sacchariflorus. Unlike other tested Bacillus species, the AK13 strain grows at pH 13 and withstands 11% (w/v) NaCl. Growth of the AK13 strain at elevated pH without urea promoted calcium carbonate (CaCO3) formation. Irregular vaterite-like CaCO3 minerals that were tightly attached to cells were observed using field-emission scanning electron microscopy. Energy-dispersive X-ray spectrometry, confocal laser scanning microscopy, and X-ray diffraction analyses confirmed the presence of CaCO3 around the cell. Isotope ration mass spectrometry analysis confirmed that the majority of CO32- ions in the CaCO3 were produced by cellular respiration rather than being derived from atmospheric carbon dioxide. The minerals produced from calcium acetate-added growth medium formed smaller crystals than those formed in calcium lactate-added medium. Strain AK13 appears to heal cracks on mortar specimens when applied as a pelletized spore powder. Alkaliphilic Bacillus sp. AK13 is a promising candidate for self-healing agents in concrete.