• Title/Summary/Keyword: Self Resonance Frequency

Search Result 87, Processing Time 0.03 seconds

Comparative Biomechanical Study of Self-tapping and Non Self-tapping Tapered Dental Implants in Artificially Simulated Quality 2 Bone

  • Baek, Yeon-Wha;Kim, Duck-Rae;Park, Ju-Hee;Lim, Young-Jun
    • Journal of Korean Dental Science
    • /
    • v.4 no.2
    • /
    • pp.52-58
    • /
    • 2011
  • Purpose: Modifications of implant design have been related to improving initial stability. The purpose of this study was to investigate their respective effect on initial stability between two tapered implant systems (self-tapping vs. non-self-tapping) in medium density bone using three different analytic methods. Materials and Methods: Self-tapping implant (GS III$^{(R)}$; Osstem Implant Co., Busan, Korea) and non-self-tapping implant (Replace Select$^{(R)}$; Nobel Biocare, G$\H{o}$teborg, Sweden) were investigated. In Solid rigid polyurethane blocks of artificially simulated Quality 2 bone, each of the 5 implants was inserted according to the manufacturer's instructions for medium-bone drilling protocol. Evaluation of initial stability was carried out by recording the maximum insertion torque (IT) and performing the resonance frequency analysis (RFA), and the pull-out test. Results: The IT and RFA values of self-tapping implant were significantly higher than those of non self-tapping implant (P=.009 and P=.047, respectively). In the pull-out values, no significant differences were found in implants between two groups (P=.117). Within each implant system, no statistically significant correlation was found among three different outcome variables. Conclusions: These findings suggest that design characteristics of implant geometry significantly influence the initial stability in medium bone density.

Design of A Self-Oscillating Mixer Using A Novel DGS (새로운 DGS구조를 이용한 자기 발진 혼합기 설계)

  • Joung, Myung-Sup;Kim, Jong-Ok;Park, Jun-Seok;Lim, Jae-Bong;Kim, Heong-Seok;Cho, Hong-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1958-1960
    • /
    • 2003
  • Here we describe a unique self-oscillating mixer (SOM) design using a modified defected ground structure (DGS) for down-converter. Proposed SOM is consisted of self-oscillator, which can produce negative resistance and select resonance frequency, and input/output matching filter. As the advantage of this SOM can be reused by module that mix signals with transistor that is used to oscillator, it is simply and low-costly designed Also, there is easy advantage to be applied in RFIC/ MMIC technology because it offers excellent high Q value in spite of using micro-strip structure. Designed self-oscillating frequency is 1.04GHz and RF frequency established is 0.8GHz. It was achieved 20dB conversion loss and phase noise of -95dBc/Hz at 100KHz offset frequency over intermediate frequency (IF). The equivalent circuit parameters for DGS are extracted by using a three dimensional EM simulator and simple circuit analysis method.

  • PDF

Micro Power Properties of Harvesting Devices as a Function of PZT cantilever length and gross area (PZT 캔틸레버의 길이와 면적에 따른 에너지 하베스팅 장치의 출력 특성)

  • Kim, I.S.;Joo, H.K.;Song, J.S.;Kim, M.S.;Jeong, S.J.;Lee, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1246-1247
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device, PMN-PZT thick film was formed by the screen printing method on the Ag/Pd coated alumina substrate. The layer was 8 layers and slurry where a-terpineol, ethycellulose, ferro B-75001 as Vehicle, PMN-PZT powder used are fabricated by ball mill. The output power quality was be also investigated by changing the load resistance, weight and frequency. The made piezoelectric energy harvesting device was resulted from the conditions of 33$k{\Omega}$, 0.25g, 197Hz respectively. The thick film was prepared at the condition of 2.75Vrms, and its power was 230${\mu} W$ and its thickness was 56${mu}m$. The piezoelectric energy harvesting device output voltage was increased, when the load weight, load resistance was increasing and resonance frequency was diminishing. The other side, resonance frequency was diminished, when the weight was increasing. And output power was continuously it changed by load resistance, output voltage, weight and resonance frequency.

  • PDF

Analysis on Static Load and Resonance Frequency of Bed in High-speed Automatic Lathe for Precision Machining (정밀가공용 고속 자동선반 베드의 정하중 및 공진주파수 해석)

  • Ha, Joohwan;Lee, YunChul;Joo, KangWo;Jo, Eunjeong;Lee, Young-Sik;Lee, Jae-Kwan;Kim, Kwangsun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.32-38
    • /
    • 2017
  • This paper is about the analysis on the vibration characteristic of tooling units on the precision bed in high-speed automatic lathe for precision machining. An automatic lathe operating at about 25,000 RPM is a critical factor in the self-weight stress and deformation of the bed. Especially, the resonance frequency should be grasped in advance to prevent abnormal vibration that may occur during processing. If the wrong bed is used, the resonant frequency can have a fatal influence on the precision machining and increase the defective rate of precision machined parts such as semiconductor parts. In this paper, vibration characteristics were evaluated through static load and resonance frequency analysis of automatic lathe bed. As a result, the maximum stress was 0.14MPa, the maximum deformation amount was $17.9{\mu}m$, and the natural frequency was 364.72Hz. The resonance frequency was calculated as 718Hz, and the stability was confirmed by being in the range of 400Hz or more, which is the processing condition.

  • PDF

Analysis on Static Load and Resonance Frequency of Bed in Turning and Hobbing Automatic Lathe for Precision Machining (선삭 및 호빙 가공용 자동선반 베드의 정하중 및 공진주파수 해석)

  • Ha, Joo-Hwan;Lee, Yun-Chul;Jo, Eun-Jeong;Lee, Young-Sik;Lee, Jae-Kwan;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.66-70
    • /
    • 2018
  • This paper is about the analysis on the vibration characteristic of tooling units on the precision bed in turning and hobbing automatic lathe for precision machining. An automatic lathe operating at about 12,000 RPM is a critical factor in the self-weight stress and deformation of the bed. Especially, the resonance frequency should be grasped in advance to prevent abnormal vibration that may occur during processing. If the wrong bed is used, the resonant frequency can have a fatal influence on the precision machining and increase the defective rate of precision machined parts such as semiconductor parts. In this paper, vibration characteristics were evaluated through static load and resonance frequency analysis of automatic lathe bed. As a result, the maximum stress was 14.52 MPa, the maximum deformation amount was $12.15{\mu}m$, and the natural frequency was 189.43 Hz. The resonance frequency was calculated as 500 Hz, and the stability was confirmed by being in the range of 200 Hz or more, which is the processing condition.

Design of A Self Oscillating and Mixing Frequency Down-Converter Using A DGS (DGS 구조를 이용한 자기발진혼합형 주파수 하향변환기 설계)

  • 정명섭;박준석;김형석;임재봉
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.536-543
    • /
    • 2003
  • In this paper, we describe a unique self oscillating and mixing (SOM) down-converter design using a modified defected ground structure (DGS). The proposed SOM converter is consisted of self-oscillator, which can produce negative resistance and select resonance frequency, RF matching circuit, and IF low pass filter. As the advantage of this SOM converter can mix LO and RF signals as well as inducing LO signal with only one active device. it is designed as a simple structure and the low cost. Also, there is easy advantage to be applied in RFIC/MMIC technology because it offers excellent phase noise performance in spite of using micro-strip structure. The LO signal for the proposed SOM converter is designed at 1㎓ and RF frequency was chosen to be 800MHz. The achieved conversion loss and phase noise performances of the implemented SOM converter are 15㏈ and -95dBc/Hz at 100KHz offset frequency respectively. The equivalent circuit parameters for DGS are extracted by using a three dimensional EM simulator and simple circuit analysis method.

Stability measurements on the implants of mandibular molar area using OsstellTM (OsstellTM을 이용한 하악구치부 임플랜트의 안정성 측정)

  • Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.3
    • /
    • pp.205-211
    • /
    • 2001
  • The aim of this investigation was to evaluate successfully functioning implants stability in the partially edentulous mandibular molar sites by resonance frequency measurements. Resonance frequency measurement is more objective and clinically non-invasive method than any other methods had been used. In this study, $Osstell^{TM}$ (Integration Diagnostics, Sweden) was used. 15 patients ( 7 males, 8 females ) were received each 2 implants in their mandibular unilaterally partial edentulous molar sites. Total 30 implants were installed, 28 implants were $Br{\aa}nemark^{(R)}$ self-tapping fixtures(MK II, Nobel Biocare, Sweden) and 2 were $3i^{(R)}$(USA) self-tapping fixtures. Minimum of functional loading durations was 12 months and there were no significant marginal bone resorptions and peri-implant problems. From this test, the following results were drawn: 1. Mean ISQ values of implants in the first and second mandibular molar area were $73.66{\pm}4.45$, $71.93{\pm}3.41$, respectively. There was no significant difference between two groups(p>0.05). Also mean ISQ value of total sum was 72.8. 2. Mean ISQ values of implants in males and females group were $71.64{\pm}4.06$, $73.81{\pm}3.76$, respectively. And there was no significant difference between two group(p>0.05). 3. Correlation between implant lengths and ISQ values was weak(r=0.128).

  • PDF

A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement (PLIF 및 자발광 계측을 이용한 이중선회 가스터빈 연소기에서 연소불안정 모드 연구)

  • Choi, Inchan;Lee, Keeman;Juddoo, Mrinal;Masri, A.R.
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This paper described an experimental investigations of combustion instability mode in a lean premixed dual swirl combustor for micro-gasturbine system. When such the instability occurs, a strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave which results in a loud, annoyed sound and may also lead a structural damage to the combustion chamber. The detailed period of flame behavior and heat release in combustion instability mode have been examined with high speed OH and CH-PLIF system and $CH^*$ chemiluminescence measurement, flame tomography with operated at 10 kHz and 6 kHz each. Experiment results suggest that unstable flame behavior has a specific frequency with 200 Hz and this frequency is accords with about 1/2 sub-harmonic of combustor resonance frequency, not fundamental frequency. This is very interesting phenomenon that have not reported yet from other previous works. Therefore, when a thermo-acoustic instability with Rayleigh criterion occurs, the fact that the period of heat release and flame behavior are different each other was proposed for the first time through this work.

A COMPARATIVE ANALYSIS WITH RESONANCE FREQUENCY ACCORDING TO VARIOUS SIMULATED BONE DEFECTS (다양한 가상 골 결함에 따른 공진 주파수의 비교 분석)

  • Kim Sang-Mi;Park Chan-Jin;Yi Yang-Jin;Chang Beom-Seok;Cho Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.487-497
    • /
    • 2005
  • Purpose: Resonance frequency analysis (RFA) , a non-invasive technique for the clinical measurement of implant stability, was investigated. Peri-implant bony defect may contribute to implant failure. This in vitro study evaluated the resonance frequencies according to various bony defects and determined whether the directional bone defect can affect the value of frequency analysis. Material and Method: Fifteen 3.75 mm in diameter and 10 mm in length, machined self-tapping implant future were used. Twelve types of bone defects that have different horizontal and vertical dimensions were simulated. Embedded implants were attached to the dental surveyor. Then, the transducer was connected with the implant fixture and the ISQ value was measured at four different directions. Two-way analysis of variance and post hoc $Sch\`{e}ffe'$ test were performed at the 95% significance level. Results: The control group showed the highest ISQ value and 5 thread-$360^{\circ}$ group had the lowest one. As the vertical exposure of implants in each angle was increased, the ISQ value was decreased. Although the horizontal exposure in each thread was increased, the ISQ value was not significantly decreased. Conclusion : Although the simulated defect type was different from each other, the ISQ value was similar among groups.

Resonance May Elucidate New Bone Formation Induced by Low amplitude and High frequency Mechanical Stimuli (고주파 미세자극에 의한 뼈의 생성에 관한 모델링)

  • Yoon, Young June;Kim, Moon-Hwan;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • Bone is a self-assembly material. It is known that the low amplitude and high frequency mechanical stimulus, which is much less amplitude but higher frequency than those induced by the normal activity, can induce new bone formation. The vibrating resonance is employed to elucidate why new bone is formed by this kind of mechanical stimulus. For example, as 30 Hz and $5{\mu}{\epsilon}$ mechanical stimulus is applied at the wall of canaliculus (the tiny tube type pathway of bone fluid flow and the diameter of canaliculus is less than 200nm), the osteocytic cell membrane experiences $1,000{\mu}{\epsilon}$ strain due to the vibrating resonance. Two experiments will follow after this pilot study; (1) observing the MAPK pathway of osteocytes by using in-vitro cell culture and (2) visualizing the actin filament network in the osteocytes by using the imaging technique, such as confocal laser scanning microscope.

  • PDF