• 제목/요약/키워드: Self Organizing Feature Map

검색결과 152건 처리시간 0.029초

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • 김용수
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

초음파 센서와 신경훼로망을 이용한 물체 인식과 복원 (Object Recognition and Restoration Using Ultrasound Sensors and Neural Networks)

  • 추승원;이기성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.349-352
    • /
    • 1994
  • An object recognition and restoration using ultrasound sensors and neural networks are presented. The planar arrangement of the sensor is used to reduce the interference effects between sensors. The SOFM(Self-Organizing Feature Map) Neural Network and SCL(Simple Competitive Learning) method are learned with the acquired data. Lab experiments were performed that the object can be recognized ed the resolutions of the object can be enhanced by using the small number of the ultrasound array and neural networks.

  • PDF

SOM을 이용한 등록상표에 대한 내용기반 이미지 검색 (Content-based Trademark Image Retrieval System using SOM)

  • 이재준;신민기;백우진;신문선
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.489-492
    • /
    • 2007
  • 산업재산권중 하나인 상표에 대한 효율적인 이미지 검색은 상표도용 및 이로 인한 분쟁을 방지할 수 있다. 이를 위해서는 효율적인 내용기반 유사이미지 검색이 필요하다. 본 논문에서는 상표이미지검색에 있어 가시적인 특성(visual feature)을 그레이 히스토그램을 통해서 상표이미지의 특성값을 추출하여 이를 입력패턴으로 SOM(Self-Organizing Map)알고리즘을 적용한 내용기반 유사이미지 검색시스템을 제안한다.

진보된 다단계 특징벡터 기반의 분류기 모델 (Advanced Multistage Feature-based Classification Model)

  • 김재영;박동철
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.36-41
    • /
    • 2010
  • 본 논문에서는 다단계 특성벡터 기반의 분류기 모델(Multistage Feature-based Classification Model: MFCM)의 성능을 향상시킨 진보된 형태의 MFCM (Advanced MFCM: AMFCM)을 제안하는데, AMFCM은 MFCM과 같이 주어진 데이터에서 추출된 전체의 특징벡터를 연결하여 이용하지 않고, 같은 성질의 특징벡터들끼리 모아서, 각각의 국지적 학습기를 통하여 분류에 이용한다. 그러나, AMFCM은 MFCM에서 사용되는 각각의 국지적 분류기를 위한 각 특징벡터의 분류기여도를 더욱 섬세하게 조정하여 최종적인 분류의 정확도를 높이는 방안을 제안한다. 제안된 AMFCM의 성능을 검증하기 위하여, 음악장르 분류의 문제에 대한 실험을 진행하였다. 또한, 국지적 분류기로 Self-Organizing Map과 중심 신경망을 사용하여 실험을 수행하였는데, 제안된 AMFCM은 사용된 국지적 분류기의 종류와 사용된 군집의 개수에 따라 기존의 MFCM에 비해 평균 8% - 15% 이상의 성능향상을 보여 준다.

다채널 말초 신경신호의 실시간 디코딩 (Real-Time Decoding of Multi-Channel Peripheral Nerve Activity)

  • 지인혁;이연정;추준욱
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1039-1049
    • /
    • 2020
  • 신경의수를 제어하기 위해서는 사용자의 의도를 인식하는 신경신호 디코딩이 중요하다. 본 논문에서는 다채널 말초 신경신호의 실시간 디코딩 방법을 제안한다. 말초 신경신호는 정중신경과 요골신경에서 측정되었으며 운동잡음은 국소 근사 다항식에 의해 제거되었다. 다음으로 활동전위는 k-평균 알고리즘으로 분류되었다. 특징벡터는 활동전위의 발화율로부터 추출되었으며 자기 조직화 특징지도를 통해 차원이 축소되었다. 마지막으로 다층 퍼셉트론으로 손동작을 분류하였다. 원숭이 실험에서 모든 신호처리가 실시간 제한조건 이내에 완료되었으며 높은 성공률로 손동작을 인식할 수 있었다.

함수근사와 규칙추출을 위한 클러스터링을 이용한 강화학습 (Reinforcement Learning with Clustering for Function Approximation and Rule Extraction)

  • 이영아;홍석미;정태충
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권11호
    • /
    • pp.1054-1061
    • /
    • 2003
  • 강화학습의 대표적인 알고리즘인 Q-Learning은 상태공간의 모든 상태-행동 쌍(state-action pairs)의 평가값이 수렴할 때까지 반복해서 경험하여 최적의 전략(policy)을 얻는다. 상태공간을 구성하는 요소(feature)들이 많거나 요소의 데이타 형태가 연속형(continuous)인 경우, 상태공간은 지수적으로 증가하게 되어, 모든 상태들을 반복해서 경험해야 하고 모든 상태-행동 쌍의 Q값을 저장하는 것은 시간과 메모리에 있어서 어려운 문제이다. 본 논문에서는 온라인으로 학습을 진행하면서 비슷한 상황의 상태들을 클러스터링(clustering)하고 새로운 경험에 적응해서 클러스터(cluster)의 수정(update)을 반복하여, 분류된 최적의 전략(policy)을 얻는 새로운 함수근사(function approximation)방법인 Q-Map을 소개한다. 클러스터링으로 인해 정교한 제어가 필요한 상태(state)는 규칙(rule)으로 추출하여 보완하였다. 미로환경과 마운틴 카 문제를 제안한 Q-Map으로 실험한 결과 분류된 지식을 얻을 수 있었으며 가시화된(explicit) 지식의 형태인 규칙(rule)으로도 쉽게 변환할 수 있었다.

웨이브릿 변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류 (Condition Classification for Small Reciprocating Compressors Using Wavelet Transform and Artificial Neural Network)

  • 임동수;양보석;안병하;;김동조
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.29-35
    • /
    • 2003
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a classification method of diagnosing the small reciprocating compressor for refrigerators using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them ate compared with each other. This paper is focused on the development of an advanced signal classifier to automatize the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

HMM을 이용한 보행자 인식 (HMM-Based Human Gait Recognition)

  • 신봉기;석흥일
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권5호
    • /
    • pp.499-507
    • /
    • 2006
  • 최근, 사람을 인식하는데 있어 걸음걸이가 기존에 사용되어 오던 많은 생체인식을 보완할 만한 것으로 등장하였다. 본 연구는 보행자 실루엣의 동적 특징과 은닉 마르코프 모델(HMM)을 이용한 보행자 인식 방법을 제안한다. 보행자의 보행 모델은 무한 순환 구조의 HMM 두 가지를 사용하였다. 하나는 자기 조직화 지도(SOM)를 벡터 양자화기로 하는 이산 HMM방식이고, 다른 하나는 주성분 분석(PCA) 공간으로 변환된 특징 벡터를 이용하는 연속 HMM방식이다. 실험 결과 HMM이 몇 가지 변수의 조정에 대해 일관성 있는 성능 변화를 보이며 최고 88.1%의 인식률을 기록하였다. 또한 기존 연구 결과와 비교하여 볼 때 특징과 제안 구조의 모델은 보행자 인식에 충분한 적용 가능성이 있으며, 나아가 걸음걸이가 생체 인식으로 이용되기에 좋은 지표가 될 수 있을 것으로 판단된다.

가상 로봇 팔 제어를 위한 퍼지-SOFM 방식의 근전도 패턴인식 (A Virtual Robot Arm Control by EMG Pattern Recognition of Fuzzy-SOFM Method)

  • 이정훈;정경권;이현관;엄기환
    • 전자공학회논문지CI
    • /
    • 제40권2호
    • /
    • pp.9-16
    • /
    • 2003
  • 본 논문에서는 개선된 SOFM(Self Organizing Feature Map)방식을 이용한 근전도 패턴인식으로 가상 로봇 팔을 제어하는 방식을 제안한다. 개선된 SOFM 방식은 근전도 신호의 전처리기를 사용하는 대신에 근전도 신호 자체를 SOFM에 입력으로 사용하고, 퍼지논리시스템을 이용하여 SOFM의 이웃반경과 학습율을 자동 조절하는 간단한 방식으로 입력 패턴을 더욱 빠르고 신뢰성있게 분류한다. 개선된 방식의 성능을 확인하기 위하여 어깨, 손목, 팔꿈치의 여섯 가지 동작의 근전도 패턴인식을 실험한 결과 기존의 일반적인 SOFM방식보다 제안한 SOFM방식의 인식율이 21.7% 향상되고, 평균학습 수도 절반이하로 감소되었으며, 인식한 근전도 신호를 이용하여 컴퓨터 상의 가상 로봇 팔을 정확하게 제어하였다.

Neural Network Combination (NNC) 기법을 이용한 부분방전 패턴인식의 신뢰성 향상에 관한 연구 (A Study on the Reliability Improvement of Partial Discharge Pattern Recognition using Neural Network Combination (NNC) Method)

  • 김성일;정승용;구자윤;임윤석;구선근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.9-11
    • /
    • 2005
  • 본 연구는 GIS 진단신뢰성 향상기술 개발을 목적으로, 16개의 인위적 결함을 이용하여 부분방전 신호를 발생시키고 검출하여 그 패턴인식 확률을 높이기 위하여 신경망에 Genetic Algorithm (GA) 을 적용하였다. 이를 위하여 다음과 같은 5가지 서로 다른 신경망 모델을 선택하였다: Back Propagation (BP), Jordan-Elman Network (JEN), Principal Component Analysis (PCA), Self-Organizing Feature Map (SOFM) 및 Support Vector Machine (SVM). 이와 같이 선택된 모델에 동일한 데이터를 학습 시키고 패턴인식 확률을 비교 및 분석하였다. 실험 결과에 의하면, BP의 인식률이 가장 높고 다음으로 JEN의 인식률이 높이 나타났으며, 후자의 경우 모든 결함에 대하여 정확한 패턴분류를 한 반면에 전자의 경우 1.8% 의 분류 오차가 발생하였다. 따라서 인식률이 높은 신경망이 더 정확한 패턴분류를 보장하지 못한다는 실험적 결과를 고려 할 때, 인식률이 높은 두 개의 모델을 선정하여 각각의 출력에 일정한 가중치를 주고 합산하여 새로운 출력을 얻는 방법을 제안한다.

  • PDF