• 제목/요약/키워드: Selective inhibitor

검색결과 399건 처리시간 0.029초

PULMONARY XENOBIOTIC CONJUGATION IN THE ISOLATED PURFUSED RABBIT LUNG AND IN VITRO: EFFECT OF ETHANOL

  • Yang, C.Mierha;Carlson, Gary P.
    • Toxicological Research
    • /
    • 제7권2호
    • /
    • pp.191-208
    • /
    • 1991
  • Pulmonary conjugation pathways may be important for the metabolism of xenobiotics introduced via airways of systemically. The objective of this study was to determine the pulmonary conjugating capacity in both the isolated perfused rabbit lung (IPRL) and in vitro, and the ability of ethanol to alter the above. The IPRL was capable of conjugating glutathione (GSH) with either 1-chloro-2,4-dinitrobenzene (CDNB) of 1,2-epoxy-(p-nitrophenoxy) propane(ENP). The pulmonary GSH conjugation with ENP was inhibited by cibacron blue, indicating the presence of glutathione-S-transferase (GST) u and/or classes, but it was not altered by buthionine sulfoximine, a selective inhibitor of Gamma-glutamylcysteine synthetase.

  • PDF

Carnosol induces the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via activating BMP-signaling pathway

  • Abdallah, Basem M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.197-206
    • /
    • 2021
  • Carnosol is a phenolic diterpene phytochemical found in rosemary and sage with reported anti-microbial, anti-oxidant, anti-inflammatory, and anti-carcinogenic activities. This study aimed to investigate the effect of carnosol on the lineage commitment of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) into osteoblasts and adipocytes. Interestingly, carnosol stimulated the early commitment of mBMSCs into osteoblasts in dose-dependent manner as demonstrated by increased levels of alkaline phosphatase activity and Alizarin red staining for matrix mineralization. On the other hand, carnosol significantly suppressed adipogenesis of mBMSCs and downregulated both early and late markers of adipogenesis. Carnosol showed to induce osteogenesis in a mechanism mediated by activating BMP signaling pathway and subsequently upregulating the expression of BMPs downstream osteogenic target genes. In this context, treatment of mBMSCs with LDN-193189, BMPR1 selective inhibitor showed to abolish the stimulatory effect of carnosol on BMP2-induced osteogenesis. In conclusion, our data identified carnosol as a novel osteoanabolic phytochemical that can promote the differentiation of mBMSCs into osteoblasts versus adipocytes by activating BMP-signaling.

Modulation of Cytochrome P450 1B1 Expression by A Stilbene Analog and its Effect on the Sensitivity to Anticancer Agents in Human Cancer Cells.

  • Lee, Sang-Kwang;Park, Sung-Sik;Kim, Mie-Young;Chun, Young-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.209.1-209.1
    • /
    • 2003
  • We have previously shown that 2, 3', 4, 5' -tetramethoxystilbene(TMS) from synthetic trans-stilbene analogues, is one of the most potently selective inhibitor of recombinant human cytochrome P450 1B1 in vitro. In the present studies. the effects of TMS on the expression of cytochrome P450 1B1 were investigated in human cancer cell lines such as MCF-7 and HL -60. TCDD-stimulated P450 1B1 protein and mRNA expression was significantly suppressed by TMS in a dose-dependent manner. (omitted)

  • PDF

Induction of cell death by 2,4,3',5'-tetramethoxystilbene in human acute promyelocytic leukemia (HL-60) cells and its mechanism.

  • Lee, Sang-Kwang;Kim, Mie-Young;Chun, Young-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.149.1-149.1
    • /
    • 2003
  • We have previously shown that 2,4,3',5'-tetramethoxystilbene (TMS), a synthetic trans-stilbene analogue, is one of the most potently selective inhibitor of human cytochrome P450 1B1 in vitro and in vivo. In the present studies, the apoptotic effects of TMS were investigated in HL-60 cells. The effects of TMS on the proliferation of HL-60 cells were determined with MTT assay. TMS exhibited cytotoxicity with an $IC_50$ value of 37 nM. Cotreatment with TMS and etoposide, a well-known anticancer drug significantly enhanced the cytotoxicity. (omitted)

  • PDF

c-Jun N-terminal Kinase Contributes to Norepinephrine-Induced Contraction Through Phosphorylation of Caldesmon in Rat Aortic Smooth Muscle

  • Lee, Youn-Ri;Lee, Chang-Kwon;Park, Hyo-Jun;Kim, Hyo-Jin;Kim, Jung-Hwan;Kim, Jae-Heung;Lee, Keun-Sang;Lee, Yun-Lyul;Min, Kyung-Ok;Kim, Bo-Kyung
    • 대한물리치료과학회지
    • /
    • 제13권2호
    • /
    • pp.129-135
    • /
    • 2006
  • Vascular smooth muscle contraction is mediated by activation of extracellular signal-regulated kinase (ERK) 1/2, an isoform of mitogen-activated protein kinase (MAPK). However, the role of stress-activated protein kinase/c-Jun N-terminal kinase (JNK) in vascular smooth muscle contraction has not been defined. We investigated the role of JNK in the contractile response to norepinephrine (NE) in rat aortic smooth muscle. NE evoked contraction in a dose-dependent manner, and this effect was inhibited by the JNK inhibitor SP600125. NE increased the phosphorylation of JNK, which was greater in aortic smooth muscle from hypertensive rats than from normotensive rats. NE-induced JNK phosphorylation was significantly inhibited by SP600125 and the conventional-type PKC (cPKC) inhibitor Go6976, but not by the Rho kinase inhibitor Y27632 or the phosphatidylinositol 3-kinase inhibitor LY294002. Thymeleatoxin, a selective activator of cPKC, increased JNK phosphorylation, which was inhibited by $G{\ddot{o}}6976$. SP600125 attenuated the phosphorylation of caldesmon, an actin-binding protein whose phosphorylation is increased by NE. These results show that JNK contributes to NE-mediated contraction through phosphorylation of caldesmon in rat aortic smooth muscle, and that this effect is regulated by the PKC pathway, especially cPKC.

  • PDF

cAMP induction by ouabain promotes endothelin-1 secretion via MAPK/ERK signaling in beating rabbit atria

  • Peng, Li-qun;Li, Ping;Zhang, Qiu-li;Hong, Lan;Liu, Li-ping;Cui, Xun;Cui, Bai-ri
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.9-14
    • /
    • 2016
  • Adenosine 3',5'-cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the $Na^+-K^+$-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain ($3.0{\mu}mol/L$) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabain-increased atrial dynamics was blocked by KB-R7943 ($3.0{\mu}mol/L$), an inhibitor for reverse mode of $Na^+-Ca^{2+}$ exchangers (NCX), but did not by L-type $Ca^{2+}$ channel blocker nifedipine ($1.0{\mu}mol/L$) or protein kinase A (PKA) selective inhibitor H-89 ($3.0{\mu}mol/L$). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline ($100.0{\mu}mol/L$), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP ($0.5{\mu}mol/L$) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 ($30{\mu}mol/L$), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds.

BRAF(V600E) 돌연변이 갑상선 역형성암에서 BRAF(V600E) 억제에 의한 EGFR 발현 증가가 표적치료에 대한 저항성발현과 상피-간질세포이행과정에 미치는 영향분석 (Mechanism of Resistance and Epithelial to Mesenchymal Transition of BRAF(V600E) Mutation Thyroid Anaplastic Cancer to BRAF(V600E) Inhibition Through Feedback Activation of EGFR)

  • 변형권;나휘정;양연주;박재홍;권형주;장재원;반명진;김원식;신동엽;이은직;고윤우;최은창
    • 대한두경부종양학회지
    • /
    • 제30권2호
    • /
    • pp.53-61
    • /
    • 2014
  • Background and Objectives : Anaplastic thyroid carcinoma(ATC) is a rare but highly aggressive thyroid malignancy that is associated with an extremely poor survival despite the best multidisciplinary care. BRAF(V600E) mutation is detected in about a quarter of ATC, but unlike its high treatment response to selective BRAF inhibitor (PLX4032) in metastatic melanoma, the treatment response of ATC is reported to be low. The purpose of this study is to investigate the innate resistance mechanism responsible for this low treatment response to BRAF inhibitor and its effect on epithelial-mesenchymal transition(EMT). Materials and Methods : Two ATP cell lines, 8505C and FRO were selected and treated with PLX4032 and its drug sensitivity and effects on cell migration and EMT were examined and compared. Further investigation on the changes in signals responsible for the different treatment response to PLX4032 was carried out and the same experiment was performed on both orthotopic and ectopic xenograft mouse models. Results : FRO cell line was more sensitive to PLX4032 treatment compared to 8505C cell line. The resistance to BRAF inhibition in 8505C was due to increased expression of EGFR. Effective inhibition of both EGFR and p-AKT was achieved after dual treatment with BRAF inhibitor(PLX4032) and EGFR inhibitor(Erlotinib). Similar results were confirmed on in vivo study. Conclusion : EGFR-mediated reactivation of the PI3K/AKT pathway and MAPK pathway contributes to the relative insensitivity of BRAF(V600E) mutant ATC cells to PLX4032. Dual inhibition of BRAF and EGFR leads to sustained treatment response including cell invasiveness.

불안장애 환자에서의 심박변이도와 세로토닌재흡수억제제투여 후의 치료효과 (Heart Rate Variability in Patients with Anxiety Disorder and Effects of Selective Serotonin Reuptake Inhibitor)

  • 이강준;김현;이승환;박영민;정영조
    • 정신신체의학
    • /
    • 제14권2호
    • /
    • pp.94-101
    • /
    • 2006
  • 연구목적 : 본 연구는 불안장애 환자들과 정상대조군을 대상으로, 심박변이도(heart rate variability, HRV)를 이용해서 자율신경계의 심장조절기능을 비교하고 그 생리학적 의미를 살펴보고자 한 것이다. 또한 불안장애 환자들에게 세로토닌재흡수억제제 (selective serotonin reuptake inhibitor, SSRI)를 투여한 뒤 투여전과 투여후를 비교해보고 치료효과를 판정하여 임상적 적용가능성을 고찰해보고자 하였다. 방법: DSM-IV의 진단기준에 의하여 불안장애로 진단받은 환자 30명과 정상대조군 30명을 대상으로 연구를 수행하였다. 불안증상의 심각도를 평가하기 위하여 Hamilton Anxiety Scale을 사용하였으며 정상대조군은 학생과 의사, 간호사 그리고 병원에 근무하는 직원들이었다. 검사는 불안장애 환자군과 정상대조군의 HRV를 측정한 후 시영역과 주파수 영역별로 분석하였다. 그리고 불안장애 환자들을 대상으로 SSRI 투여전과 투여 뒤 4주후 HRV를 측정하였다. SSRI 약물로는 fluoxetine, paroxetine, citalopram, sertraline을 사용하였다. 통계적 검증은 SPSS-Windows (version 10.0)을 이용하여 independent t-test, chi-square test, 그리고 paired t-test를 사용하였다. 결과: 불안장애 환자군과 정상대조군의 연령, 성별의 유의한 통계적 차이는 없었으며, 치료 후의 Hamilton Anxiety Scale 점수는 치료전과 비교하여 유의하게 감소되었다.(p<0.05). 정상대조군과 치료전 불안장애군을 비교하였을 경우, 치료전 불안장애군이 시간영역변수들인 RMSSD, SDNN에서 유의한 감소를 나타내었다. 또 주파수 영역 변수들을 살펴보면, 치료 전 불안장애 환자군이 정상대조군에 비해 TP, VLF, LF, HF에서 유의한 감소를 나타내었으며 LF/HF는 유의한 차이가 없었다. 그리고 불안장애 환자군에서 SSRI 치료 전과 치료 후의 HRV 변인들은 통계적으로 유의한 차이가 없었다. 결론: 치료전 불안장애군이 정상대조군에 비하여 감소된 HRV를 나타내었고, 불안장애 환자군을 대상으로 한 SSRI 치료전후 비교에서는 두 군간에 유의한 차이가 없었다. SSRI제제들이 자율신경의 활성을 반영하는 HRV의 인자에 영향을 미치지 않는 것으로 결과가 나타난 것이지만, 향후 더 많은 환자를 대상으로 한 연구가 진행되어야 할 것이다.

  • PDF

Inhibitory Effects of Ginsenoside-Rb2 on Nicotinic Stimulation-Evoked Catecholamine Secretion

  • Lim, Hyo-Jeong;Lee, Hyun-Young;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.431-439
    • /
    • 2014
  • The aim of the present study was to investigate whether ginsenoside-Rb2 (Rb2) can affect the secretion of catecholamines (CA) in the perfused model of the rat adrenal medulla. Rb2 ($3{\sim}30{\mu}M$), perfused into an adrenal vein for 90 min, inhibited ACh (5.32 mM)-evoked CA secretory response in a dose- and time-dependent fashion. Rb2 ($10{\mu}M$) also time-dependently inhibited the CA secretion evoked by DMPP ($100{\mu}M$, a selective neuronal nicotinic receptor agonist) and high $K^+$ (56 mM, a direct membrane depolarizer). Rb2 itself did not affect basal CA secretion (data not shown). Also, in the presence of Rb2 ($50{\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator ($50{\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, $10{\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, $10{\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of Rb2 ($10{\mu}M$) and L-NAME (an inhibitor of NO synthase, $30{\mu}M$), the inhibitory responses of Rb2 on ACh-evoked CA secretory response was considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of Rb2-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of Rb2 ($10{\mu}M$) was greatly elevated compared to the corresponding basal released level. Collectively, these results demonstrate that Rb2 inhibits the CA secretory responses evoked by nicotinic stimulation as well as by direct membrane-depolarization from the isolated perfused rat adrenal medulla. It seems that this inhibitory effect of Rb2 is mediated by inhibiting both the influx of $Ca^{2+}$ and $Na^+$ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade.

간암세포주에서 상피간엽전환억제를 통한 Silymarin의 침윤 및 전이 억제 효과 (Silymarin Attenuates Invasion and Migration through the Regulation of Epithelial-mesenchymal Transition in Huh7 Cells)

  • 김도훈;박소정;이승연;윤현서;박충무
    • 대한임상검사과학회지
    • /
    • 제50권3호
    • /
    • pp.337-344
    • /
    • 2018
  • 발생하는 간암 중 가장 주요한 형태인 간세포암은 강한 전이특성으로 인해 높은 재발율과 사망률을 보인다. Silymarin은 엉겅퀴에서 추출한 플라보노이드 성분으로 여러 암세포주에서 상피간엽전환(epithelial mesenchymal transition, EMT) 조절을 통해 항암효과를 보이는 것으로 보고되었다. 본 연구에서는 silymarin이 EMT의 조절을 통해 간세포암 세포주인 Huh7 cell의 침윤과 전이를 억제하는지를 분석하고자 하였다. Huh7 cell의 침윤과 전이 활성을 분석하기 위하여 wound healing assay와 in vitro invasion assay를 시행하였고 EMT 관련 유전자와 상위 신호전달물질의 발현 분석을 위해 Western blot assay를 실시하였다. 그 결과 silymarin은 농도 의존적으로 Huh7 cell의 침윤과 전이를 억제하였다. EMT 관련 유전자 중 세포 부착 단백질인 E-cadherin은 증가하였으나, 중간엽세포의 지표인 vimentin, 종양미세환경 조절에 관여하는 MMP-9의 발현은 억제되었고 이들의 활성에 관여하는 전사인자인 Snail과 nuclear factor $(NF)-{\kappa}B$ 또한 농도 의존적으로 활성이 감소하는 것을 확인할 수 있었다. 특히, 상위신호전달물질 중 silymarin은 phosphoinositide-3-kinase (PI3K)/Akt의 인산화 억제를 통해 EMT 관련 유전자들을 조절하는 것으로 나타났고 이것은 selective inhibitor인 LY294002의 처리 결과로 확인할 수 있었다. 결과적으로, silymarin은 PI3K/Akt 경로를 통해 EMT 관련 유전자의 발현을 조절함으로써 Huh7 cell의 침윤과 전이를 억제하는 것으로 생각된다. 이를 통해 silymarin이 간세포암의 전이 억제에 효과적인 항암물질의 후보가 될 수 있는 잠재력을 가진 후보물질이 될 수 있음을 보여주었다.