• Title/Summary/Keyword: Selective deficit supply method

Search Result 1, Processing Time 0.015 seconds

Flow duration change in downstream of reservoir by selective deficit supply method (선택적 부족분 공급방식에 따른 댐 하류하천의 유황 변화 분석)

  • Choi, Youngje;Park, Moonhyung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1021-1030
    • /
    • 2022
  • Currently, South Korea implements water resources management policies focusing on integrated water quantity, quality and hydro-ecology management. In particular, rehabilitation of natural rivers has become a major issue. As for reservoir operation during non-flood season, efforts have been made continuously to apply the Deficit Supply Method that can maximize water supply to address droughts and increase in water demand. When Deficit Supply Method is applied, the water supply capacity of reservoir can be maximized. However, downstream water flow would remain constant. In consideration that a natural stream, a long-time-created hydro-ecology, can be significantly influenced by flow variability, the Deficit Supply Method-based reservoir operation can generate effective water supply. Still, it may trigger adverse effects from the aspects of natural rehabilitation and hydro-ecology recovery. The main objective of this study is to analyze impacts on downstream flow duration through reservoir simulation by comparing the Firm Supply Method, the Deficit Supply Method and the Selective Deficit Supply Method, and examining each method's effects on reservoir operation. This study found that the Firm Supply Method could maintain water flow variability, but could not maximize water supply capacity. When the Deficit Supply Method was applied, water supply capacity could be increased while remaining vulnerable regarding water flow variability, as a difference between average flow and low flow was negligible at downstream. In comparison, the Selective Deficit Supply Method was found to sustain time-based reliability at 95% or higher, whereas downstream flow duration could be maintained at a level similar to the level generated by the Firm Supply Method.