• Title/Summary/Keyword: Selective Etching

Search Result 152, Processing Time 0.019 seconds

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Energy band gap of $Zn_{0.86}Mn_{0.14}Te$ epilayer grown on GaAs(100) substrates (GaAs(100)기판 위에 성장된 $Zn_{0.86}Mn_{0.14}Te$에피막의 띠 간격 에너지)

  • 최용대;안갑수;이광재;김성구;심석주;윤희중;유영문;김대중;정양준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.122-126
    • /
    • 2003
  • In this study, $Zn_{0.86}Mn_{0.14}$Te epilayer of 0.7 $\mu\textrm{m}$-thickness was grown on GaAs(100) substrate by using hot wallepitaxy. GaAs(100) substrate was removed from $Zn_{0.86}Mn_{0.14}$Teepilayer by the selective etching solution. The crystal structure and the lattice constant of only Z $n_{0.86}$ M $n_{0.14}$Te epilayer were investigated to be zincblende and 6.140 $\AA$ from X-ray diffraction pattern, respectively. Mn composition x of $Zn_{1-x}Mn_x$Te epilayer was found to be 0.14 using this lattice constant and Vegard's law. The crystal quality of the epilayer was confirmed to be very good due to 256 arcsec-full-width at half-maximum of the double crystal rocking curve. The absorption spectra from the transmission ones were obtained to measure the band gap energy of $Zn_{0.86}Mn_{0.14}$Te epilayer from 300 K to 10 K. With the decreasing temperature,. strong absorption regions in the absorption spectra were shifted to higher energy side and the absorption peak meaning the free exciton formation appeared near the absorption edge. The band gap energy values of $Zn_{0.86}Mn_{0.14}$Te epilayer at 0 K and 300 K were found to be almost 2.4947 eV and 2.330 eV from the temperature dependence of the free exciton peak position energy of $Zn_{0.86}Mn_{0.14}$Te epilayer, respectively. The free exciton peak position energy of $Zn_{0.86}Mn_{0.14}$Te epilayer without GaAs substrate was larger 15.4 meV than photoluminescence peak position energy at 10 K. This energy difference between two peaks was analysed to be Stokes shift.