• Title/Summary/Keyword: Selection theorem

Search Result 47, Processing Time 0.019 seconds

Time Series Data Cleaning Method Based on Optimized ELM Prediction Constraints

  • Guohui Ding;Yueyi Zhu;Chenyang Li;Jinwei Wang;Ru Wei;Zhaoyu Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • Affected by external factors, errors in time series data collected by sensors are common. Using the traditional method of constraining the speed change rate to clean the errors can get good performance. However, they are only limited to the data of stable changing speed because of fixed constraint rules. Actually, data with uneven changing speed is common in practice. To solve this problem, an online cleaning algorithm for time series data based on dynamic speed change rate constraints is proposed in this paper. Since time series data usually changes periodically, we use the extreme learning machine to learn the law of speed changes from past data and predict the speed ranges that change over time to detect the data. In order to realize online data repair, a dual-window mechanism is proposed to transform the global optimal into the local optimal, and the traditional minimum change principle and median theorem are applied in the selection of the repair strategy. Aiming at the problem that the repair method based on the minimum change principle cannot correct consecutive abnormal points, through quantitative analysis, it is believed that the repair strategy should be the boundary of the repair candidate set. The experimental results obtained on the dataset show that the method proposed in this paper can get a better repair effect.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

Composite Design Criteria : Model and Variance (복합실험기준의 설정: 모형과 분산구조)

  • 김영일
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.393-405
    • /
    • 2000
  • Box and Draper( 19(5) listed some properties of a design that should be considered in design selection. But it is impossible that one design criterion from optimal experimental design theory reflects many potential objectives of an experiment, because the theory was originally based on the underlying model and its strict assumption about the error structure. Therefore, when it is neces::;ary to implement multi-objective experimental design. it is common practice to balance out the several optimal design criteria so that each design criterion involved benefits in terms of its relative "high" efficiency. In this study, we proposed several composite design criteria taking the case of heteroscedastic model. WVhen the heteroscedasticity is present in the model. the well known equivalence theorem between 1)- and C-optimality no longer exists and furthermore their design characteristics are sometimes drastically different. We introduced three different design criteria for this purpose: constrained design, combined design, and minimax design criteria. While the first two methods do reflect the prior belief of experimenter, the last one does not take it into account. which is sometimes desirable. Also we extended this method to the case when there are uncertainties concerning the error structure in the model. A simple algorithm and concluslOn follow.On follow.

  • PDF

Derivation and Application of Boussinesq Equations for the Wave Field in Porous Media (공극매체에서의 파동장에 대한 Boussinesq 방정식의 유도 및 적용)

  • Chun, Insik;Min, Yongchim;Lim, Hak-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1061-1071
    • /
    • 2015
  • In the present study, the Navier-Stokes (N-S) equations delineating water flows inside porous media were derived applying Reynolds transport theorem in order to provide a basis for analyzing water wave problems inside the porous media. Then, the derived N-S equations were compared with the same species of equations in existing researches. Based on the N-S equations, a set of Boussinesq equations was then derived in such a form that the dispersiveness and nonlinearity of water waves inside the porous media can be properly reproduced. Finally, numerical analyses were carried out to demonstrate the validity of the equations. The reflection and transmission coefficients of porous breakwaters were calculated and compared with the results of existing hydraulic experiments. The numerical results showed a rather sensitive dependency on the virtual mass coefficient of grains constituting the porous media. The selection of the coefficient with zero turned out to give nice agreements with numerical and experimental results.

Game Theory Based Coevolutionary Algorithm: A New Computational Coevolutionary Approach

  • Sim, Kwee-Bo;Lee, Dong-Wook;Kim, Ji-Yoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.463-474
    • /
    • 2004
  • Game theory is a method of mathematical analysis developed to study the decision making process. In 1928, Von Neumann mathematically proved that every two-person, zero-sum game with many pure finite strategies for each player is deterministic. In the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, Kauffman proposed the NK model to analyze coevolutionary dynamics between different species. He showed how coevolutionary phenomenon reaches static states and that these states are either Nash equilibrium or ESS in game theory. Since studies concerning coevolutionary phenomenon were initiated, there have been numerous other researchers who have developed coevolutionary algorithms. In this paper we propose a new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) and we confirm that this algorithm can be a solution of evolutionary problems by searching the ESS. To evaluate this newly designed approach, we solve several test Multiobjective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by the coevolutionary algorithm and analyze the optimization performance of our algorithm by comparing the performance of our algorithm with that of other evolutionary optimization algorithms.

Game Theory Based Co-Evolutionary Algorithm (GCEA) (게임 이론에 기반한 공진화 알고리즘)

  • Sim, Kwee-Bo;Kim, Ji-Youn;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • Game theory is mathematical analysis developed to study involved in making decisions. In 1928, Von Neumann proved that every two-person, zero-sum game with finitely many pure strategies for each player is deterministic. As well, in the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Not the rationality but through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) introduced by Maynard Smith. Keeping pace with these game theoretical studies, the first computer simulation of co-evolution was tried out by Hillis in 1991. Moreover, Kauffman proposed NK model to analyze co-evolutionary dynamics between different species. He showed how co-evolutionary phenomenon reaches static states and that these states are Nash equilibrium or ESS introduced in game theory. Since the studies about co-evolutionary phenomenon were started, however many other researchers have developed co-evolutionary algorithms, in this paper we propose Game theory based Co-Evolutionary Algorithm (GCEA) and confirm that this algorithm can be a solution of evolutionary problems by searching the ESS.To evaluate newly designed GCEA approach, we solve several test Multi-objective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by co-evolutionary algorithm and analyze optimization performance of GCEA by comparing experimental results using GCEA with the results using other evolutionary optimization algorithms.

확률의 상관 빈도이론과 포퍼

  • Song, Ha-Seok
    • Korean Journal of Logic
    • /
    • v.8 no.1
    • /
    • pp.23-46
    • /
    • 2005
  • The purpose of the paper Is to discuss and estimate early Popper's theory of probability, which is presented in his book, The Logic of of Scientific Discovery. For this, Von Mises' frequency theory shall be discussed in detail, which is regarded as the most systematic and sophisticated frequency theory among others. Von Mises developed his theory to response to various critical questions such as how finite and empirical collectives can be represented in terms of infinite and mathematical collectives, and how the axiom of randomness can be mathematically formulated. But his theory still has another difficulty, which is concerned with the inconsistency between the axiom of convergence and the axiom of randomness. Defending the objective theory of probability, Popper tries to present his own frequency theory, solving the difficulty. He suggests that the axiom of convergence be given up and that the axiom of randomness be modified to solve Von Mises' problem. That is, Popper introduces the notion of ordinal selection and neighborhood selection to modify the axiom of randomness. He then shows that Bernoulli's theorem is derived from the modified axiom. Consequently, it can be said that Popper solves the problem of inconsistency which is regarded as crucial to Von Mises' theory. However, Popper's suggestion has not drawn much attention. I think it is because his theory seems anti-intuitive in the sense that it gives up the axiom of convergence which is the basis of the frequency theory So for more persuasive frequency theory, it is necessary to formulate the axiom of randomness to be consistent with the axiom of convergence.

  • PDF