• Title/Summary/Keyword: Selection Methods

Search Result 4,115, Processing Time 0.033 seconds

Variable Selection Based on Direction Vectors

  • Kyungmee Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • We review a multivariate version of Kendall's tau based on direction vectors of observations. And with this statistic we propose an analog of the forward variable selection method which selects a set of independent variables for further studies to build the eventual predicting model. This method does not assume the distributions of observations and the linear model and it is strong to the outliers with high asymptotic efficiencies relative to the parametric Pearson's correlation coefficient.

  • PDF

Bayesian Model Selection for Support Vector Regression using the Evidence Framework

  • Hwang, Chang-Ha;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.813-820
    • /
    • 1999
  • Supprot vector machine(SVM) is a new and very promising regression and classification technique developed by Vapnik and his group at AT&T Bell Laboratories. in this paper we provide a brief overview of SVM for regression. Furthermore we describe Bayesian model selection based on macKay's evidence framework for SVM regression.

  • PDF

An Alternative Parametric Estimation of Sample Selection Model: An Application to Car Ownership and Car Expense (비정규분포를 이용한 표본선택 모형 추정: 자동차 보유와 유지비용에 관한 실증분석)

  • Choi, Phil-Sun;Min, In-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.345-358
    • /
    • 2012
  • In a parametric sample selection model, the distribution assumption is critical to obtain consistent estimates. Conventionally, the normality assumption has been adopted for both error terms in selection and main equations of the model. The normality assumption, however, may excessively restrict the true underlying distribution of the model. This study introduces the $S_U$-normal distribution into the error distribution of a sample selection model. The $S_U$-normal distribution can accommodate a wide range of skewness and kurtosis compared to the normal distribution. It also includes the normal distribution as a limiting distribution. Moreover, the $S_U$-normal distribution can be easily extended to multivariate dimensions. We provide the log-likelihood function and expected value formula based on a bivariate $S_U$-normal distribution in a sample selection model. The results of simulations indicate the $S_U$-normal model outperforms the normal model for the consistency of estimators. As an empirical application, we provide the sample selection model for car ownership and a car expense relationship.

Classifying Cancer Using Partially Correlated Genes Selected by Forward Selection Method (전진선택법에 의해 선택된 부분 상관관계의 유전자들을 이용한 암 분류)

  • 유시호;조성배
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • Gene expression profile is numerical data of gene expression level from organism measured on the microarray. Generally, each specific tissue indicates different expression levels in related genes, so that we can classify cancer with gene expression profile. Because not all the genes are related to classification, it is needed to select related genes that is called feature selection. This paper proposes a new gene selection method using forward selection method in regression analysis. This method reduces redundant information in the selected genes to have more efficient classification. We used k-nearest neighbor as a classifier and tested with colon cancer dataset. The results are compared with Pearson's coefficient and Spearman's coefficient methods and the proposed method showed better performance. It showed 90.3% accuracy in classification. The method also successfully applied to lymphoma cancer dataset.

FAFS: A Fuzzy Association Feature Selection Method for Network Malicious Traffic Detection

  • Feng, Yongxin;Kang, Yingyun;Zhang, Hao;Zhang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.240-259
    • /
    • 2020
  • Analyzing network traffic is the basis of dealing with network security issues. Most of the network security systems depend on the feature selection of network traffic data and the detection ability of malicious traffic in network can be improved by the correct method of feature selection. An FAFS method, which is short for Fuzzy Association Feature Selection method, is proposed in this paper for network malicious traffic detection. Association rules, which can reflect the relationship among different characteristic attributes of network traffic data, are mined by association analysis. The membership value of association rules are obtained by the calculation of fuzzy reasoning. The data features with the highest correlation intensity in network data sets are calculated by comparing the membership values in association rules. The dimension of data features are reduced and the detection ability of malicious traffic detection algorithm in network is improved by FAFS method. To verify the effect of malicious traffic feature selection by FAFS method, FAFS method is used to select data features of different dataset in this paper. Then, K-Nearest Neighbor algorithm, C4.5 Decision Tree algorithm and Naïve Bayes algorithm are used to test on the dataset above. Moreover, FAFS method is also compared with classical feature selection methods. The analysis of experimental results show that the precision and recall rate of malicious traffic detection in the network can be significantly improved by FAFS method, which provides a valuable reference for the establishment of network security system.

Genome-wide scans for detecting the selection signature of the Jeju-island native pig in Korea

  • Lee, Young-Sup;Shin, Donghyun;Won, Kyeong-Hye;Kim, Dae Cheol;Lee, Sang Chul;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.539-546
    • /
    • 2020
  • Objective: The Jeju native pig (JNP) found on the Jeju Island of Korea is a unique black pig known for high-quality meat. To investigate the genetic uniqueness of JNP, we analyzed the selection signature of the JNP in comparison to commercial pigs such as Berkshire and Yorkshire pigs. Methods: We surveyed the genetic diversity to identify the genetic stability of the JNP, using the linkage disequilibrium method. A selective sweep of the JNP was performed to identify the selection signatures. To do so, the population differentiation measure, Weir-Cockerham's Fst was utilized. This statistic directly measures the population differentiation at the variant level. Additionally, we investigated the gene ontologies (GOs) and genetic features. Results: Compared to the Berkshire and Yorkshire pigs, the JNP had lower genetic diversity in terms of linkage disequilibrium decays. We summarized the selection signatures of the JNP as GO. In the JNP and Berkshire pigs, the most enriched GO terms were epithelium development and neuron-related. Considering the JNP and Yorkshire pigs, cellular response to oxygen-containing compound and generation of neurons were the most enriched GO. Conclusion: The selection signatures of the JNP were identified through the population differentiation statistic. The genes with possible selection signatures are expected to play a role in JNP's unique pork quality.

Decision Making Model using Multiple Matrix Analysis for Optimum Construction Method Selection (다중 매트릭스 분석 기법을 이용한 최적 건축공법 선정 의사결정지원 모델)

  • Lee, Jong-Sik;Lim, Myung-Kwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.331-339
    • /
    • 2016
  • According to high-rise, complexation, and enlargement of buildings, various construction methods are being developed, and the significance of construction method selection about main work types has emerged as a major interest. However, it has been pointed out that hand-on workers cannot consider project characteristics carefully, and they lack an objective standard or reference for main construction method selection. Hence, the selection is being made depending on hand-on workers' experience and intuition. To solve this problem, various studies have proceeded for construction method selection of main work types using Artificial Intelligence like Fuzzy, AHP and Case-based reasoning. It is difficult to apply many different kinds of construction method selection to every main work type with consideration for characteristics of work types and condition of a construction site when selecting construction method in the field. Accordingly, this study proposed the decision-making model which can apply to fields easily. Using matrix analysis and liner transformation, this study verified consistency of study models applied in the process of soil retaining selection with a case study.

A study on healthcare institution selection of healthcare consumers using theory of consumption values : Focusing on relations among clinics or small sized hospitals, general hospitals, and large-sized hospitals (소비가치 이론을 이용한 의료소비자의 의료기관 선택 요인 분석 : 중소병원, 종합병원, 대형종합병원 비교 중심으로)

  • Kim, Yang-Kyun;Kim, Jun-Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.4
    • /
    • pp.71-86
    • /
    • 2009
  • The healthcare environment today is changing rapidly with factors of healthcare consumers in selecting medical institutions also altering at a fast pace under the circumstances. In this study, the theory of consumption values established by Sheth in 1991 is adopted in order to examine particular value affecting consumer selection of healthcare institutions. For the purpose of this study, healthcare consumers were surveyed using questionnaires developed based on the five values of Sheth supplemented by value of effort to acquire hospital information and value in health. Consequently, 24 consumption values affecting selection process were confirmed through discriminant analysis. As a result of regression analysis on factors affecting consumer selection of healthcare institution, effort to acquire hospital information and age among demographic characteristics of respondents are determined important predictors for consumer selection of general hospitals over clinics or small-sized hospitals. Further, service, reputation scale of healthcare institution among functional values and importance of health and effort to acquire hospital information among value in health are identified as significant predictors for consumer selection of large-sized general hospitals over clinic or small-sized hospitals. This study suggests not only vital implications for marketing strategy of healthcare institutions, but also methods to promote positive image for healthcare providers. In addition, this study closely examines the cause of the leaning phenomenon of healthcare comsumers toward large-sized general hospitals.

Classification of Hyperspectral Image Pixel using Optimal Band Selection based on Discrete Range (이산 범위 기반 최적 밴드 추출을 이용한 초분광 이미지 픽셀 분류)

  • Chang, Duhyeuk;Jung, Byeonghyeon;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.149-154
    • /
    • 2021
  • Unlike or common images, Hyperspectral images were taken by continuous electromagnetic spectral into numerous bands according to wavelengths and are high-capacity high-resolution images. It has more information than ordinary images, so it is used to explore objects and materials. To reduce the amount of information in hyper-spectral images to be processed, band selection is utilized. Existing band selection techniques are heuristic techniques based on statistics, which take a long time and often lack generality and universality. To compensate for this, this paper utilizes quantization concept to draw representative bands through Discrete Range, we use them for band selection algorithm. Experimental results showed that the proposed technique performed much faster than conventional band selection methods, and that the performance accuracy was similar to that of the original even though the number of bands was reduced by one-seventh to one-tenth.

Fuzzy-based Segment-Boost Method for Effective Face Recognition (퍼지기반 Segment-Boost 방법을 통한 효과적인 얼굴인식)

  • Chang, Won-Suk;Noh, Chang-Hyeon;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • This paper suggests fuzzy-based Segment-Boost method and an effective method for face recognition using the fuzzy-based Segment-Boost. Fuzzy-based Segment-Boost eliminates the limitations of Segment-Boost, and it guarantees improved learning performance and the stability of the performance. By using the fuzzy theory, fuzzy-based Segment-Boost optimizes the selection number of sub-vectors, and leads the optimized learning performance. The fuzzy controller designed in this paper measures learning performance of the fuzzy-based Segment-Boost, and it controls the selection number of sub-vectors by inferring the optimized selection number. The simulation results show that the fuzzy controller inferred the selection number which is very approximate to the true optimized value. As a result, fuzzy-based Segment-Boost showed higher face recognition rate than compared boosting methods and it preserves the velocity of feature selection as fast as that of Segment-Boost. From the experimental results, it was proved that fuzzy-based Segment-Boost has improved and stable performances of learning, feature selection and face recognition.