• Title/Summary/Keyword: Seismically isolated

Search Result 80, Processing Time 0.023 seconds

Seismic Performance Evaluation of Piping System Crossing the Isolation Interface in Seismically Isolated NPP (면진 원전 면진-비면진구간 연결 배관의 내진성능 평가)

  • Hahm, Daegi;Park, Junhee;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.141-150
    • /
    • 2014
  • A methodology to evaluate the seismic performance of interface piping systems that cross the isolation interface in the seismically isolated nuclear power plant (NPP) was developed. The developed methodology was applied to the safety-related interface piping system to demonstrate the seismic performance of the target piping system. Not only the seismic performance for the design level earthquakes but also the performance for the beyond design level earthquakes were evaluated. Two artificial seismic ground input motions which were matched to the design response spectra and two historical earthquake ground motions were used for the seismic analysis of piping system. The preliminary performance evaluation results show that the excessive relative displacements can occur in the seismically isolated piping system. If the input ground motion contained relatively high energy in the low frequency region, we could find that the stress response of the piping system exceed the allowable stress level even though the intensity of the input ground motion is equal to the design level earthquake. The structural responses and seismic performances of piping system were varied sensitively with respect to the intensities and frequency contents of input ground motions. Therefore, for the application of isolation system to NPPs and the verification of the safety of piping system, the seismic performance of the piping system subjected to the earthquake at the target NPP site should be evaluated firstly.

A Probabilistic Study on Seismic Response of Seismically Isolated Nuclear Power Plant Structures using Lead Rubber Bearing (LRB 면진장치를 적용한 원전구조물의 지진응답에 따른 확률론적 연구)

  • Kim, Hyeon-Jeong;Song, Jong-Keol;Moon, Ji-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.45-54
    • /
    • 2018
  • The seismically isolated nuclear power plants shall be designed for design basis earthquake (DBE) and considered to ensure safety against beyond design basis earthquake (BDBE). In order to limit the excessive displacement of the seismic isolation system of the seismically isolated structure, the moat is installed at a certain distance from the upper mat supporting the superstructure. This certain distance is called clearance to stop (CS) and is calculated from the 90th percentile displacement of seismic isolation system subjected to BDBE. For design purposes, the CS can be obtained simply by multiplying the median displacement of the seismic isolation system against DBE by scale factor with a value of 3. The DBE and BDBE used in this study were generated by using 30 sets of artificial earthquakes corresponding to the nuclear standard design spectrum. In addition, latin hyper cube sampling was applied to generate 30 sets of artificial earthquakes corresponding to maximum - minimum spectra. For the DBE, the median displacement and the 99th percentile displacement of the seismic isolation system were calculated. For the BDBE, the suitability of the scale factor was assessed after calculating the 90th percentile displacement of the seismic isolation system.

Evaluation of Heating and Buckling Effects on Inelastic Displacement Responses of Lead-Rubber Bearing Subject to Strong Ground Motions (강진 시 납-고무 면진장치의 비탄성 변위응답에 대한 온도상승 및 좌굴효과의 분석)

  • Yun, Su-Jeong;Hong, Ji-Yeong;Moon, Jiho;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.289-299
    • /
    • 2019
  • The tendency to use a probabilistic design method rather than a deterministic design method for the design of nuclear power plants (NPPs) will increase because their safety should be considered and strictly controlled in relation to various causes of damage. The distance between a seismically isolated NPP structure and a moat wall is called the clearance to stop. The clearance to stop is obtained from the 90th percentile displacement response of a seismically isolated NPP subject to a beyond design basis earthquake (BDBE) in the probabilistic design method. The purpose of this study is to analyze the effects of heating and buckling effects on the 90th percentile displacement response of a lead-rubber bearing (LRB) subject to a BDBE. The analysis results show that considering the heating and buckling effects to estimate the clearance to stop is conservative in the evaluation of the 90th percentile displacement response. If these two effects are not taken into account in the calculation of the clearance to stop, the underestimation of the clearance to stop causes unexpected damage because of an increase in the collision probability between the moat wall and the seismically isolated NPP.

Field testing of a seismically isolated concrete bridge

  • Chang, K.C.;Tsai, M.H.;Hwang, J.S.;Wei, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.241-257
    • /
    • 2003
  • The first seismically isolated structure in Taiwan was completed in early 1999. Seven new bridges of the Second National Freeway located at Bai-Ho area, a region which is considered to be of high seismic risk, have been designed and constructed with lead-rubber seismic isolation bearings. Since this is the first application of seismic isolation method to the practical construction in Taiwan, field tests were conducted for one of the seven bridges to evaluate the assumptions and uncertainties in the design and construction. The test program is composed of ambient vibration tests, forced vibration tests, and free vibration tests. For the free vibration tests, a special test setup composed of four 1000 kN hydraulic jacks and a quick-release mechanism was designed to perform the function of push-and-quick release. Valuable results have been obtained based on the correlation between measured and analytical data so that the analytical model can be calibrated. Based on the analytical correlation, it is concluded that the dynamic characteristics and free vibration behavior of the isolated bridge can be well captured when the nonlinear properties of the bearings are properly considered in the modeling.

Progress of Applications and Studies on Earthquake Resistance Design of Bridges in Korea

  • Ha, Dong-Ho;Koh, Hyun-Moo;Ok, Seung-Yong;Lee, Sun-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.33-42
    • /
    • 2007
  • This paper describes the state-of-the art research activities on seismic isolation systems for improving the seismic capacities of the bridges in Korea. Though Korea is located in a region of low-to-moderate seismicity, the construction of seismic isolation systems has increased rapidly. The application of seismic isolation system has become popular worldwide because of its stable behavior and economical construction especially for bridge structures. Since optimal reliability level of isolated bridges can be determined as the one that provides the highest net life-cycle benefit to society, or the minimum Life-Cycle Cost (LCC), an optimal design procedure based on minimum LCC concept is more expedient for the design of seismically isolated bridges in areas of low-to-moderate seismicty. To verify the adequacy of the new design concept based on the LCC minimization, experimental studies on seismically isolated bridge are introduced as well, which include pseudo-dynamic test of scaled pier and dynamic field test of full-scale. With the application of seismic isolation systems, many kinds of dampers to improve the seismic capacity of structure are also applied not only to new bridges but also to existing bridges.

Seismic Fragility Analysis of Seismically Isolated Nuclear Power Plant Structures using Equivalent Linear- and Bilinear-Lead Rubber Bearing Model (등가선형 및 이선형 납-고무받침 모델을 적용한 면진된 원전구조물의 지진 취약도 해석)

  • Lee, Jin-Hi;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.207-217
    • /
    • 2015
  • In order to increase seismic performance of nuclear power plant (NPP) in strong seismic zone, lead-rubber bearing (LRB) can be applied to seismic isolation system of NPP structures. Simple equivalent linear model as structural analysis model of LRB is more widely used in initial design process of LRB than a bilinear model. Seismic responses for seismically isolated NPP containment structures subjected to earthquakes categorized into 5 different soil-site classes are calculated by both of the equivalent linear- and bilinear- LRB models and compared each others. It can be observed that the maximum displacements of LRB and shear forces of containment in the case of the equivalent linear LRB model are larger than those in the case of bilinear LRB model. From the seismic fragility curves of NPP containment structures isolated by LRB, it can be observed that seismic fragility in the case of equivalent linear LRB model are about 5~30 % larger than those in the case of bilinear LRB model.

Dynamci Behaviors of Seismically Isolated Bridges According to Different Location of Lead Rubber Bearings (납면진장치의 위치변화에 따른 면진교량의 동특성)

  • 박정근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.383-390
    • /
    • 2000
  • The purpose of this paper is to investigate dynamic characteristics of an isolated bridge with a different location of seismic isolation at piers and to determine the best location of seismic isolation. The substructure of the bridge is two column framed type reinforced concrete and has relatively high piers so it has long natural period, To decide the best location of seismic isolations displacement shear force bending moment acceleration and absorbed energy are compared using fast nonlinear analysis. To isolate overall structures is effective to bending moments and shear forces for long period bridges.

  • PDF

Cost-Effectiveness Evaluation of the Structure with Viscoelastic Dampers (점탄성감쇠기를 설치한 구조물의 비용효율성 평가)

  • 고현무;함대기;조상열
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.387-393
    • /
    • 2001
  • Installing vibration control devices in the structure rises as a solution instead of increasing structural strength considering construction cost. Especially, viscoelastic dampers show excellent vibration control performance at low cost and are easy to install in existing structures compared with other control devices. Therefore, cost-effectiveness of structure with viscoelastic dampers needs to be evaluated. Previous cost-effectiveness evaluation method for the seismically isolated structure(Koh et al., 1999;2000)is applied on the building structure with viscoelastic dampers, which combines optimal design and cost-effectiveness evaluation for seismically isolated structures based on minimum life-cycle cost concept. Input ground motion is modeled in the form of spectral density function to take into account acceleration and site coefficients. Damping of the viscoelastic damper is considered by modal strain energy method. Stiffness of shear building and shear area of viscoelastic damper are adopted as design variables for optimization. For the estimation of failure probability, transfer function of the structure with viscoelastic damper for spectral analysis is derived from the equation of motion. Results reveal that cost-effectiveness of the structure with viscoelastic dampers is relatively high in how seismic region and stiff soil condition.

  • PDF

Weighted Latin Hypercube Sampling to Estimate Clearance-to-stop for Probabilistic Design of Seismically Isolated Structures in Nuclear Power Plants

  • Han, Minsoo;Hong, Kee-Jeung;Cho, Sung-Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.63-75
    • /
    • 2018
  • This paper proposes extension of Latin Hypercube Sampling (LHS) to avoid the necessity of using intervals with the same probability area where intervals with different probability areas are used. This method is called Weighted Latin Hypercube Sampling (WLHS). This paper describes equations and detail procedure necessary to apply weight function to WLHS. WLHS is verified through numerical examples by comparing the estimated distribution parameters with those from other methods such as Random Sampling and Latin Hypercube Sampling. WLHS provides more flexible way on selecting samples than LHS. Accuracy of WLHS estimation on distribution parameters is depending on the selection of weight function. The proposed WLHS is applied to seismically isolated structures in nuclear power plants. In this application, clearance-to-stops (CSs) calculated using LHS proposed by Huang et al. [1] and WLHS proposed in this paper, respectively, are compared to investigate the effect of choosing different sampling techniques.