• Title/Summary/Keyword: Seismically Isolated structure

Search Result 42, Processing Time 0.04 seconds

Mechanical Characteristics of Laminated Rubber Bearings for Seismic Isolation (면진용 적층고무베어링의 기계적 역학특성)

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Yoo, Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.79-89
    • /
    • 1997
  • The objective of this paper is to investigate the mechanical characteristics of the laminated rubber bearings (LRBs) for the seismic isolation. The evaluations of the proposed equations of the LRB horizontal stiffness are carried out and these equations are extended to the visco-elastic problems to investigate the damping amplifications of LRBs. The stability evaluation of LRBs is also performed. For investigation of the dynamic characteristics of LRBs, the horizontal stiffness equations of the LRBs considering the P-delta effects are applied to the modeling of a seismically isolated structure and the earthquake response time history analyses are carried out. From this research, the proposed simple equation of the horizontal stiffness of LRB is so useful for the design loads and easily extended to the visco-elastic problems. Through the stability evaluation of LRB, the increasing ratio of the total rubber thickness of the LRB severely decrecises the bucking load than the increasing ratio of unit rubber thickness. From the comparison of the dynamic shear deflection of LRB, the analysis results are in good agreement with those of the experiments.

  • PDF

Seismic Response of Seismically-Isolated Nuclear Power Plants considering Age-related Degradation of High Damping Rubber Bearing (고감쇠고무 적층받침의 경년열화를 고려한 원전구조물의 지진응답)

  • Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • The high damping rubber bearings contributed to reduce a seismic force transmitted to upper structures, the material properties of rubber changes with time and the rubber with age-related degradation can affect the seismic response of structures and equipments. Therefore the seismic response of structure considering age-related degradation of isolators should be evaluated. In this paper, the stiffness and damping for isolators were defined using the aging data proposed by other researchers. The reactor containment building and the auxiliary building were selected to conduct the nonlinear analysis and the natural frequency, maximum responses, floor response spectrum(FRS) were evaluated with time using the four earthquakes with different frequency contents. According to the analysis results, the seismic responses are increased by the age-related degradation of isolators and the detail inspections should be conducted up to 20 years because it was presented that the change of FRS was high during this period.