• Title/Summary/Keyword: Seismic wave

Search Result 773, Processing Time 0.022 seconds

The First Crustal Refraction Survey in the Korean Peninsula

  • Jung Mo Lee;Wooil Moon;Chang-Eob Baag;Heeok Jung;Ki Young Kim;Bong Gon Jo;Woohan Kim;Sung Kyun Kim
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.15-15
    • /
    • 2003
  • The first crustal refraction survey in the Korean Peninsula was carried out over the survey line connecting Seosan-Yeongdong-Kyeongiu on Dec. 15, 2002. The total length of the survey line was about 300 Km and 198 portable seismometers were deployed with approximately 1.5-km interval. The survey line itself was geologically important since it was almost normal to the so-called Sino-Korean structural trend. Two shots, one at Seosan (west end point) and the other at Yeongdong (mid-point), were exploded. They were 100-m deep drill well explosions. The Seosan shot consisted of a ton emulsion type explosive, while Youngdong consisted of 500 kg one. Both shots generated signals with good S/N ratios to the farthest receivers. Seismic signals were recorded by 195 receivers out of 198 ones. Although the originally planned Kyeongju shot (east end point) could not be exploded due to public discontent, the experiment was evaluated very successful. First breaks in all recorded traces were picked up and two preliminary analyses were carried out. The one is conventional flat layer analysis and the other was refraction tomographic analysis. The one resulted in average 32-km thick two-layer crust and the underlying mantle with 8.05-km/s P-velocity. The top crust layer with 3.86 kw/s P-velocity was 2.5-km thick and the lower crust layer with 6.0l km/s P-velocity was 29.5-km thick. The other resulted in a velocity cross-section. The confidence level of the velocity cross-section could not be evaluated at this time because only two shot were exploded. Detailed analyses such as surface wave dispersion are on going. Continuing crustal scale refraction surveys are planned in Korea.

  • PDF

Case Study on the Application of Chain Saw Machine for the Underground Marble Quarrying (갱내 대리석 채석을 위한 체인쏘머신 적용 사례연구)

  • Ju, Jaeyeol;Lee, Kwangpyo;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.180-191
    • /
    • 2013
  • The purpose of this research was to find an optimal quarrying for marble by analyzing the applicability and the work efficiency of a chain saw machine newly introduced in the underground Baekwoon mine. From the test results of the physical properties of Baekwoon marble, which affects the efficiency of rock cutting, it was found to have similar physical characteristics as the ones which are now being produced in the other areas in Korea. And especially it shows isotropic property, which can be thought to be advantageous as a dimensional stone. To check the long-term quality of the marble as a stone material, several tests such as corrosion resistance test and abrasion test were carried out. It was found to be vulnerable to acid rain with decrease of weight and seismic wave velocity after applying artificial rain at pH 5.6 for 50 times. The percentage of wear from abrasion test was 22.67%. The working time and cutting speed of the chain saw machine were recorded and analyzed during the test-run at the quarry. The overall work cycle was assorted into 9 unit operations and the operating time per each unit was drawn. The operating times for the two cutting patterns, which could be possibly applicable to the work site, were compared. The results indicated that the pattern B, that the cutting sequence was set to minimize the movement of the machine, showed 6% less working hours than the pattern A, which first cuts the outer boundary. With cutting pattern analysis, the ore body in the Baekwoon mine was 3 dimensionally modeled and a quarrying plan considering the existing conditions of the marble was suggested.

Effect of Constrain Condition of Soil Nail Head on Slope Stability (쏘일 네일 두부 구속조건이 사면 안정성에 미치는 영향)

  • Kim, Yongeung;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.37-43
    • /
    • 2014
  • Natural disasters such as earthquakes and tsunamis occur suddenly, so that they cause massive loss of lives and property. Especially earthquakes represent a particularly severe threat because of the extensive damage accompanied by them. In Korea, an earthquake-resistant design has been rarely applied to a design or construction of slope. However, in resent years, the researches for earthquake-resistance have been performed because the importance on the earthquake-resistance is perceived and highlighted. Soil nail method, one of the slope stability methods, is excellent for its constructability and cost effectiveness, as compared with other stability methods. Also, this method has been widely used for reinforced construction for slope stability. The studies of soil nail method have been performed on the interaction behavior between nails and slopes as well as the varied load condition such as static load, dynamic load and so on. Nevertheless, there has been minimal research regarding the constraint condition of nail head. In this study, the numerical analysis was performed for identifying effect on slope stability for the constrain condition of the soil nail. The result shows that the resistance of constrained the nail head on reinforced slope is larger compared to the one of unconstrained nail head.

Validation on the Bodywave Magnitude Estimation of the 2017 DPRK's Nuclear Test by Source Scaling (지진원 상대비율 측정법을 이용한 2017년 북한 핵실험의 실체파 규모 검증)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.589-593
    • /
    • 2018
  • Democratic Peoples' Republic of Korea (DPRK) conducted the $6^{th}$ underground nuclear test at the Punggye-ri underground nuclear test site on September 27, 2017 12 hours 30 minutes of Korean local time. Comprehensive Nuclear-Test Ban Treaty Organization (CTBTO) under U.N. announced the body wave magnitude of the event was mb 6.1 while U.S. Geological Survey (USGS)'s calculation was mb 6.3. In this study, the differences of the magnitude estimates were investigated and verified. For this purpose, a source scaling between the $5^{th}$ and $6^{th}$ event, which's epicenters are 200 meters apart, was performed using seismic data sets from 30 broadband stations. The relative amplitude variations of the $6^{th}$ event compared to the $5^{th}$ event in the frequency domain was analyzed through the scaling. The increased amount of the bodywave magnitude $m_b$ for the $6^{th}$ event was calculated at 1 Hz, which was compared to those from USGS and CTBTO's calculations.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

A Study on Reliquefaction Behavior of Railway Embankment Using 1g Shaking Table Test (1g 진동대 실험을 이용한 철도 제방의 재액상화 거동 연구)

  • Chae, Minhwan;Yoo, Mintaek;Lee, Il-Wha;Lee, Myungjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.71-81
    • /
    • 2021
  • The purpose of this study is liquefaction phenomenon was simulated using the 1g shaking table test. Analysis of liquefaction and Re-liquefaction behavior according to the ground conditions was analyzed when an embankment exists above the ground. The soil used in the experiment was silica sand and the ground composition was a liquefied layer of 50cm (Case 1), a non-liquefied layer of 17.5cm and a liquefied layer of 32.5cm (Case 2). The embankment was formed by fixing the height of 10cm and the slope of the slope at a ratio of 1:1.8. For seismic waves, excitation of a 5Hz sine wave was performed for 8 seconds, and a total of 5 case excitations were performed. In Case 1, it was confirmed that liquefaction occurred at all depths during the first vibration excitation at the free-field and that liquefaction did not occur at all depths except 5cm at the third vibration excitation. At the center of the embankment, liquefaction occurred up to a depth of 20cm during the first vibration excitation, and it was confirmed that liquefaction did not occur at all depths except for a depth of 5cm during the second vibration excitation.

S-velocity and Radial Anisotropy Structures in the Western Pacific Using Partitioned Waveform Inversion (분할 파형 역산을 사용한 서태평양 지역 S파 속도 및 방사 이방성 구조 연구)

  • Ji-hoon Park;Sung-Joon Chang;Michael Witek
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.365-384
    • /
    • 2023
  • We applied the partitioned waveform inversion to 2,026 event data recorded at 173 seismic stations from the Incorporated Research Institutions for Seismology Data Managing Center and the Ocean Hemisphere network Project to estimate S-wave velocity and radial anisotropy models beneath the Western Pacific. In the Philippine Sea plate, high-Vs anomalies reach deeper in the West Philippine basin than in the Parece-Vela basin. Low-Vs anomalies found at 80 km below the Parece-Vela basin extend deeper into the West Philippine Basin. This velocity contrast between the basins may be caused by differences in lithospheric age. Low-Vs anomalies are observed beneath the Caroline seamount chain and the Caroline plate. Overall positive radial anisotropy anomalies are observed in the Western Pacific, but negative radial anisotropy is found at > 220 km depth on the subducting plate along the Mariana trench and at ~50 km in the Parece-Vela basin. Positive radial anisotropy is found at > 200 km depth beneath the Caroline seamount chain, which may indicate the 'drag' between the plume and the moving Pacific plate. High-Vs anomalies are found at 40 ~ 180 km depth beneath the Ontong-Java plateau, which may indicate the presence of unusually thick lithosphere due to underplating of dehydrated plume material.

Development of VPPE-BE Testing System to Evaluate Modulus under Post-Compaction Variation in Matric Suction for Unsaturated Compacted Soils (다짐지반의 모관흡수력 변화에 따른 탄성계수 평가를 위한 VPPE-BE 시험 시스템 개발)

  • Lee, Sei-Hyun;Seo, Won-Seok;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.117-127
    • /
    • 2008
  • The volumetric pressure plate extractor (VPPE) was modified for the measurement of shear wave velocity ($V_s$) at various levels of matric suction as well as soil water characteristic curve (SWCC). A non-destructive technique with a pair of bender element (BE) was employed in order to measure the $V_s$ and the corresponding maximum shear modulus ($G_{max}$) of unsaturated soil specimens. Three types of soil were collected from different road construction sites in Korea. For all test soils, the variations in $G_{max}$ with the various levels of water content and matric suction were investigated using the developed apparatus. Compared with the preceding results from the suction-controlled torsional shear (TS) testing system and in-situ seismic tests, the feasibility fur evaluating modulus characteristics of unsaturated compacted soils with the developed VPPE-BE system was assessed. It was confirmed that the newly developed system would be potentially helpful in modeling seasonal variation of modulus.

Analysis of Tsunami Characteristics of Korea Southern Coast Using a Hypothetical Scenario (가상시나리오에 따른 남해안 지진해일 특성 연구)

  • Bumshick Shin;Dong-Seog Kim;Dong-Hwan Kim;Sang-Yeop Lee;Si-Bum Jo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.80-86
    • /
    • 2024
  • Large-scale earthquakes are occurring globally, especially in the South Asian crust, which is experiencing a state of tension in the aftermath of the 2011 East Japan Earthquake. Uncertainty and fear regarding the possibility of further seismic activity in the near future have been on the rise in the region. The National Disaster Management Research Institute has previously studied and analyzed the overflow characteristics of a tsunami and the rate of flood forecasting through tsunami numerical simulations of the East Sea of South Korea. However, there is currently a significant lack of research on the Southern Coast tsunamis compared to the East Coast. On the Southern Coast, the tidal difference is between 1~4 m, and the impact of the tides is hard to ignore. Therefore, it is necessary to analyze the impact of the tide propagation characteristics on the tsunami. Occurrence regions that may cradle tsunamis that affect the southern coast region are the Ryukyu Island and Nankai Trough, which are active seafloor fault zones. The Southern Coast has not experienced direct damage from tsunamis before, but since the possibility is always present, further research is required to prepare precautionary measures in the face of a potential event. Therefore, this study numerically simulated a hypothetical tsunami scenario that could impact the southern coast of South Korea. In addition, the tidal wave propagation characteristics that emerge at the shore due to tide and tsunami interactions will be analyzed. This study will be used to prepare for tsunamis that might occur on the southern coast through tsunami hazard and risk analysis.

Geoacoustic characteristics of Quaternary stratigraphic sequences in the mid-eastern Yellow Sea (황해 중동부 제4기 퇴적층의 지음향 특성)

  • Jin, Jae-Hwa;Jang, Seong-Hyeong;Kim, Seong-Pil;Kim, Hyeon-Tae;Lee, Chi-Won;Chang, Jeong-Hae;Choi, Jin-Hyeok;Ryang, Woo-Heon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.81-92
    • /
    • 2001
  • According to analyses of high-resolution seismic profiles (air gun, sparker, and SBP) and a deep-drill core(YSDP 105) in the mid-eastern Yellow Sea, stratigraphic and geoacoustic models have been established and seismo-acoustic modeling has been fulfilled using ray tracing of finite element method. Stratigraphic model reflects seismo-, litho-, and chrono-stratigraphic sequences formed under a significant influence of Quaternary glacio-eustatic sea-level fluctuations. Each sequence consists of terrestrial to very-shallow-marine coarse-grained lowstand systems tract and tidal fine-grained transgressive to highstand systems tract. Based on mean grain-size data (121 samples) of the drill core, bulk density and P-wave velocity of depositional units have been inferred and extrapolated down to a depth of the recovery using the Hamilton's regression equations. As goo-acoustic parameters, the 121 pairs of bulk density and P-wave velocity have been averaged on each unit of the stratigraphic model. As a result of computer ray-tracing simulation of the subsurface strata, we have found that there are complex ray paths and many acoustic-shadow zones owing to the presence of irregular layer boundaries and low-velocity layers.

  • PDF