• 제목/요약/키워드: Seismic structural response

검색결과 1,302건 처리시간 0.023초

Inelastic seismic response of adjacent buildings linked by fluid dampers

  • Xu, Y.L.;Yang, Z.;Lu, X.L.
    • Structural Engineering and Mechanics
    • /
    • 제15권5호
    • /
    • pp.513-534
    • /
    • 2003
  • Using fluid dampers to connect adjacent buildings for enhancing their seismic resistant performance has been recently investigated but limited to linear elastic adjacent buildings only. This paper presents a study of inelastic seismic response of adjacent buildings linked by fluid dampers. A nonlinear finite element planar model using plastic beam element is first constructed to simulate two steel frames connected by fluid dampers. Computed linear elastic seismic responses of the two steel frames with and without fluid dampers under moderate seismic events are then compared with the experimental results obtained from shaking table tests. Finally, elastic-plastic seismic responses of the two steel frames with and without fluid dampers are extensively computed, and the fluid damper performance on controlling inelastic seismic response of the two steel frames is assessed. The effects of the fundamental frequency ratio and structural damping ratio of the two steel frames on the damper performance are also examined. The results show that not only in linear elastic stage but also in inelastic stage, the seismic resistant performance of the two steel frames of different fundamental frequencies can be significantly enhanced if they are properly linked by fluid dampers of appropriate parameters.

Deep neural network for prediction of time-history seismic response of bridges

  • An, Hyojoon;Lee, Jong-Han
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.401-413
    • /
    • 2022
  • The collapse of civil infrastructure due to natural disasters results in financial losses and many casualties. In particular, the recent increase in earthquake activities has highlighted on the importance of assessing the seismic performance and predicting the seismic risk of a structure. However, the nonlinear behavior of a structure and the uncertainty in ground motion complicate the accurate seismic response prediction of a structure. Artificial intelligence can overcome these limitations to reasonably predict the nonlinear behavior of structures. In this study, a deep learning-based algorithm was developed to estimate the time-history seismic response of bridge structures. The proposed deep neural network was trained using structural and ground motion parameters. The performance of the seismic response prediction algorithm showed the similar phase and magnitude to those of the time-history analysis in a single-degree-of-freedom system that exhibits nonlinear behavior as a main structural element. Then, the proposed algorithm was expanded to predict the seismic response and fragility prediction of a bridge system. The proposed deep neural network reasonably predicted the nonlinear seismic behavior of piers and bearings for approximately 93% and 87% of the test dataset, respectively. The results of the study also demonstrated that the proposed algorithm can be utilized to assess the seismic fragility of bridge components and system.

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka;Chourasia, Ajay;Gopalakrishnan, N.
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.207-219
    • /
    • 2022
  • Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

Parameters affecting the seismic response of buildings under bi-directional excitation

  • Fontara, Ioanna-Kleoniki M.;Kostinakis, Konstantinos G.;Manoukas, Grigorios E.;Athanatopoulou, Asimina M.
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.957-979
    • /
    • 2015
  • The present paper investigates the influence of the orientation of the ground-motion reference axes, the seismic incident angle and the seismic intensity level on the inelastic response of asymmetric reinforced concrete buildings. A single storey asymmetric building is analyzed by nonlinear dynamic analyses under twenty bi-directional ground motions. The analyses are performed for many angles of incidence and four seismic intensity levels. Moreover three different pairs of the horizontal accelerograms corresponding to the input seismic motion are considered: a) the recorded accelerograms, b) the corresponding uncorrelated accelerograms, and c) the completely correlated accelerograms. The nonlinear response is evaluated by the overall structural damage index. The results of this study demonstrate that the inelastic seismic response depends on the orientation of the ground-motion reference axes, since the three individual pairs of accelerograms corresponding to the same ground motion (recorded, uncorrelated and completely correlated) can cause different structural damage level for the same incident angle. Furthermore, the use of the recorded accelerograms as seismic input does not always lead to the critical case of study. It is also shown that there is not a particular seismic incident angle or range of angles that leads to the maximum values of damage index regardless of the seismic intensity level or the ground-motion reference axes.

다중지점 지진하중에 대한 아치구조물의 지진응답 분석 (Seismic Response of Multi-Supported Spatial Structure under Seismic Excitation)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제13권4호
    • /
    • pp.57-66
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response for seismic design of spatial structure. Keel arch structure is used as an example structure because it has primary characteristics of spatial structures. In case of spatial structures with different ground condition and time lag, multiple support excitation may be subjected to supports of a keel arch structure. In this study, the response of the keel arch structure under multiple support excitation and with time lag are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic responses of spatial structure under multiple support excitation are different from those of spatial structure under simple excitation. And the seismic response of spatial structure with time lag are different from those of spatial structure without time lag. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation and time lag because the spatial structure supports may be different and very long span. It is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation.

Assessment of infill wall topology contribution in the overall response of frame structures under seismic excitation

  • Nanos, N.;Elenas, A.
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.355-372
    • /
    • 2015
  • This paper identifies the effects of infill wall existence and arrangement in the seismic response of steel frame structures. The methodology followed was based on the utilisation of overall seismic response indicators that distil the complexity of structural response in a single value hence enabling their straightforward comparative and statistical post process. The overall structure damage index after Park/Ang ($OSDI_{PA}$) and the maximum inter-story drift ratio (MISDR) have been selected as widely utilized structural seismic response parameters in contemporary state of art. In this respect a set of 225 Greek antiseismic code (EAK) spectrum compatible artificial accelerograms have been created and a series of non-linear dynamic analyses have been executed. Data were obtained through nonlinear dynamic analyses carried on an indicative steel frame structure with 5 different infill wall topologies. Results indicated the significant overall contribution of infill walls with a reduction that ranged 35-47% of the maximum and 74-81% of the average recorded $OSDI_{PA}$ values followed by an overall reduction of 64-67% and 58-61% for the respective maximum and average recorded MISDR values demonstrating the relative benefits of infill walls presence overall as well as localised with similar reductions observed in 1st level damage indicators.

Seismic performance and its favorable structural system of three-tower suspension bridge

  • Zhang, Xin-Jun;Fu, Guo-Ning
    • Structural Engineering and Mechanics
    • /
    • 제50권2호
    • /
    • pp.215-229
    • /
    • 2014
  • Due to the lack of effective longitudinal constraint for center tower, structural stiffness of three-tower suspension bridge becomes less than that of two-tower suspension bridge, and therefore it becomes more susceptible to the seismic action. By taking a three-tower suspension bridge-the Taizhou Highway Bridge over the Yangtze River with two main spans of 1080 m as example, structural dynamic characteristics and seismic performance of the bridge is investigated, and the effects of cable's sag to span ratio, structural stiffness of the center tower, and longitudinal constraint of the girder on seismic response of the bridge are also investigated, and the favorable structural system is discussed with respect to seismic performance. The results show that structural response under lateral seismic action is more remarkable, especially for the side towers, and therefore more attentions should be paid to the lateral seismic performance and also the side towers. Large cable's sag, flexible center tower and the longitudinal elastic cable between the center tower and the girder are favorable to improve structural seismic performance of long-span three-tower suspension bridges.

Generation of critical and compatible seismic ground acceleration time histories for high-tech facilities

  • Hong, X.J.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.687-707
    • /
    • 2007
  • High-tech facilities engaged in the production of semiconductors and optical microscopes are extremely expensive, which may require time-domain analysis for seismic resistant design in consideration of the most critical directions of seismic ground motions. This paper presents a framework for generating three-dimensional critical seismic ground acceleration time histories compatible with the response spectra specified in seismic design codes. The most critical directions of seismic ground motions associated with the maximum response of a high-tech facility are first identified. A new numerical method is then proposed to derive the power spectrum density functions of ground accelerations which are compatible with the response spectra specified in seismic design codes in critical directions. The ground acceleration time histories for the high-tech facility along the structural axes are generated by applying the spectral representation method to the power spectrum density function matrix and then multiplied by envelope functions to consider nonstationarity of ground motions. The proposed framework is finally applied to a typical three-story high-tech facility, and the numerical results demonstrate the feasibility of the proposed approach.

내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가 (Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis)

  • 이철호;김선웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.652-659
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and linear time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Both spectrum-compatible artificial accelerograms and recorded accelerograms were used as input ground motions for the time history analysis. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. Time history analysis results generally tended to underestimate the seismic response as compared to those of response spectrum analysis.

  • PDF

Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

  • Eem, Seunghyun;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.600-606
    • /
    • 2019
  • Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments.