• 제목/요약/키워드: Seismic strengthening

검색결과 217건 처리시간 0.02초

아라미드 섬유시트로 기둥 보강된 필로티 구조물의 내진성능 평가 (Seismic Performance of Piloti-Type Structures with Columns Strengthened with Aramid Fiber Sheets)

  • 양근혁;문주현;임채림;노광근
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.201-210
    • /
    • 2023
  • 이 연구의 목적은 필로티 건축물에서 아라미드 섬유시트의 연성보강 효과를 평가하는데에 있다. 필로티 구조물은 총 2개가 제작되었으며, 반복 횡하중 정적 실험으로 휨 거동을 평가하였다. 연성보강 효과는 횡하중-변위관계, 변위연성비, 일손상지수 및 비틀림 거동으로부터 검증되었다. 실험결과 기둥이 아라미드 섬유시트로 보강된 필로티 건축물은 최대하중 이후 기둥에서 효과적인 구속효과로 전단파괴 방지 및 비틀림이 최소화되었으며, 전반적으로 연성적인 거동을 보였다. 결과적으로 기둥이 아라미드 섬유시트로 보강된 필로티 건축물의 변위연성비 및 일손상지수는 보강되지 않은 필로티 건축물보다 각각 4.63배 및 42.81배 높았다.

RC자켓팅으로 보강된 기존 벽체의 면외방향 내진성능 실험평가 (Experimental Investigation of Out-of-Plane Seismic Resistance of Existing Walls Strengthened with RC Jacketing)

  • 엄태성;허무원;이상현;이범식;천영수
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.239-248
    • /
    • 2019
  • In this study, the out-of-plane seismic resistance of lightly-reinforced existing walls strengthened with thick RC jacket was investigated. The thick RC jacket with a thickness of 500 mm was placed at one side of the thin existing wall with a thickness of 150 mm. At the interface between the wall and RC jacket, a tee-shaped steel section with a number of anchor bolts and dowel bars was used as the shear connector. To investigate the connection performance and strengthening effects, the cyclic loading tests of four jacketed wall specimens were performed. The tests showed that the flexural strength of the jacketed walls under out-of-plane loading was significantly increased. During the initial behavior, the tee shear connector transferred forces successfully at the interface without slip. However, as the cracking, spalling, and crushing of the concrete increased in the exiting walls, the connection performance at the interface was significantly degraded and, consequently, the strength of the jacketed walls was significantly decreased. The flexural strength of the jacketed walls with tee shear connector was estimated considering the full and partial composite actions of the tee shear connector.

BFRP 보강이 직사각형 단면 철근콘크리트 기둥의 지진거동에 미치는 영향 (Effect of BFRP Wrapping on Seismic Behavior of Rectangular RC Columns)

  • 이혜린;조정현;이승건;이수형;홍기증
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권6호
    • /
    • pp.153-160
    • /
    • 2020
  • 지진동 하의 구조 시스템에서 기둥은 가장 중요한 구조 요소 중 하나이다. 이러한 관계로, 철근콘크리트(RC) 기둥의 내진 성능에 FRP 보강이 미치는 영행을 평가하기 위하여 광범위한 실험 연구가 이루어졌다. 이 중 상당수는 CFRP 또는 GFRP로 보강된 원형 단면 또는 정사각형 단면의 RC 기둥의 지진 거동에 집중하였다. 단면의 형태가 FRP 보강으로 인한 구속 효과에 영향을 미치기 때문에, 보강 효과와 최종 파괴 패턴이 형상에 따라 상이할 수 있다. 본 연구에서는 현무암 섬유를 함유한 BFRP 시트와 복합섬유 패널로 보강한 직사각형 단면을 가진 RC 기둥의 지진 거동을 살펴보기 위하여 반복하중 실험을 수행하였다. 실험 결과는 보강 효과가 크지 않았음을 보여주는데, BFRP 시트와 복합섬유 패널에 의한 구속 효과의 증가가 미미했음을 의미하며, 이는 기둥 단면 형상에 일부 기인하는 것으로 판단된다.

Strengthening techniques for masonry structures of cultural heritage according to recent Croatian provisions

  • Hadzima-Nyarko, Marijana;Ademovic, Naida;Pavic, Gordana;Sipos, Tanja Kalman
    • Earthquakes and Structures
    • /
    • 제15권5호
    • /
    • pp.473-485
    • /
    • 2018
  • The buildings of architectural and cultural heritage are mostly built with stone or brick wall elements, which are connected using limestone or limestone cement mortar, without a full knowledge of the mechanical properties of masonry structures. The compatibility of heritage masonry buildings with valid technical specifications and the rules for earthquake resistance implies the need for construction work such as repairs, strengthening or reconstruction. By strengthening the masonry buildings, ductility and bearing capacity are increased to a level, which, in the case of the earthquake design, allows for some damage to happen, however the structure retains sufficient usability and bearing capacity without the possibility of collapse. Comparison between traditional and modern techniques for seismic strengthening of masonry buildings is given according to their effects, benefits and disadvantages. Recent Croatian provisions provided for heritage buildings enabling deviation of technical specifications are discussed.

Seismic design and elastic-plastic analysis of the hengda group super high-rise office buildings

  • Zhang, Xiaomeng;Ren, Qingying;Liu, Wenting;Yang, Songlin;Zhou, Yilun
    • Earthquakes and Structures
    • /
    • 제19권3호
    • /
    • pp.175-188
    • /
    • 2020
  • The Hengda Group super high-rise building in Jinan City uses the frame-core tube structural system. With a height of 238.3 m, it is above the B-level height limit of 150 m for buildings within 7-magnitude seismic fortification zones. Therefore, it is necessary to apply performance-based seismic design to this super high-rise building. In this study, response spectrum analysis and comparative analysis of the structure are conducted using two software applications. Moreover, elastic time-history analysis, seismic analysis under an intermediate earthquake, and elastic-plastic time-history analysis under rare earthquakes are performed. Based on the analysis results, corresponding strengthening measures are implemented at weaker structural locations, such as corners, wall ends connected to framed girders, and coupling beams connected to framed girders. The failure mode and failure zone of major stress components of the structure under rare earthquakes are analysed. The conclusions to this research demonstrate that weaker locations and important parts of the structure satisfy the requirements for elastic-plastic deformation in the event of rare earthquakes.

A study on seismic behaviour of masonry mosques after restoration

  • Altunisik, Ahmet C.;Bayraktar, Alemdar;Genc, Ali F.
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1331-1346
    • /
    • 2016
  • Historical masonry structures have an important value for cultures and it is essential for every society to strengthen them and confidently transfer to the future. For this reason, determination of the seismic earthquake response, which is the most affecting factor to cause the damage at these structures, gain more importance. In this paper, the seismic earthquake behaviour of Kaya Çelebi Mosque, which is located in Turkey and the restoration process has still continued after 2011 Van earthquake, is determined. Firstly the dynamic modal analysis and subsequently the seismic spectral analysis are performed using the finite element model of the mosque constructed with restoration drawings in SAP2000 program. Maximum displacements, tensile, compressive and shear stresses are obtained and presented with contours diagrams. Turkish Earthquake Code and its general technical specifications are considered to evaluate the structural responses. After the analyses, it is seen that the displacements and compressive/shear stresses within the code limits. However, tension stresses exceeded the maximum values at some local regions. For this mosque, this is in tolerance limits considering the whole structure. But, it can be said that the tension stresses is very important for this type of the structures, especially between the stone and mortar. So, some additional strengthening solutions considering the originality of historical structures may be applicable on maximum tensile regions.

고감쇠 고무와 강재를 사용한 이중감쇠 제진시스템의 내진성능 (Seismic Performance of Dual Damper System Using High Damping Rubber and Steel)

  • 김정욱;김동건
    • 대한건축학회연합논문집
    • /
    • 제21권1호
    • /
    • pp.185-192
    • /
    • 2019
  • Recently, the frequency and magnitude of earthquakes are increasing worldwide. In Korea, the Gyeongju earthquake (2016) and the Pohang earthquake (2017) caused structural damage to many buildings. Since Korea's seismic design standards were revised to three or more stories in 2005, five-story buildings built before the revision are not designed to be earthquake-resistant. In this situation, if strong earthquake occurs in Korea, there will be great damage. To prevent this, seismic retrofit of buildings should be necessary. The seismic retrofit of classical method is mainly used to reduce the displacement generated in the structure by strengthening stiffness and strength. However, since this method increases the base shear force of the structure, it is difficult to apply it to buildings which have weak foundation. Therefore, in this study, we propose the damper system that reduces the response displacement of buildings and suppresses the increase of base shear force by using high damping rubber and steel. And the seismic performance of the damper system is verified through the experiment and the seismic analysis of the structure.

Seismic shear strengthening of R/C beams and columns with expanded steel meshes

  • Morshed, Reza;Kazemi, Mohammad Taghi
    • Structural Engineering and Mechanics
    • /
    • 제21권3호
    • /
    • pp.333-350
    • /
    • 2005
  • This paper presents results of an experimental study to evaluate a new retrofit technique for strengthening shear deficient short concrete beams and columns. In this technique a mortar jacket reinforced with expanded steel meshes is used for retrofitting. Twelve short reinforced concrete specimens, including eight retrofitted ones, were tested. Six specimens were tested under a constant compressive axial force of 15% of column axial load capacity based on original concrete gross section, $A_g$, and the concrete compressive strength, ${f_c}^{\prime}$. Main variables were the spacing of ties in original specimens and the volume fraction of expanded metal in jackets. Original specimens failed before reaching their nominal calculated flexural strength, $M_n$, and had very poor ductility. Strengthened specimens reached their nominal flexural strength and had a ductility capacity factor of up to 8 for the beams and up to 5.5 for the columns. Based on the test results, it can be concluded that expanded steel meshes can be used effectively to strengthen shear deficient concrete members.

탄소섬유쉬트로 횡구속된 콘크리트 공시체의 압축 거동에 관한 연구 (A Study on the Axial Behavior of the Concrete Cylinders Confined by Carbon Fiber Sheets)

  • 황진석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.141-148
    • /
    • 2000
  • Recently the Carbon Fiber Sheet(CFS) is widely used for strengthening damaged RC structures. Strengthening compression members such as column can increase ductility and strength due to the confinement effect. In this experiment, the behavior of concrete cylinders confined by CFS was examined. The confinement pressure is increased linearly as axial stress is increased in low axial stress, and the confinement effect of CFS was rapidly developed after near maximum axial stress, thus axial strength and ductility was improved. As the ratio of CPS is increased, concrete cylinders failed due to local fracture of CFS. The confinement effect of circular section is more efficient than that of rectangular section. And significant improvement of axial strength, axial strain, transverse strain at failure is observed in circular section. This is because in rectangular section the local fracture of CFS near corner may be occured, thus the strain efficiency ratio must be considered for RC structures with CFS.

  • PDF

Strengthening of capacity deficient RC beams - An experimental approach

  • Dar, M. Adil;Subramanian, N.;Dar, A.R.;Rather, Amer Iliyas;Atif, Mir;Syed, Sayeeda
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.303-310
    • /
    • 2019
  • Any revision of seismic codes usually demands a higher capacity from structural members, making existing structures unsafe particularly from strength considerations. Retrofitting of capacity deficient members is very suitable for tackling such situations. This paper presents an experimental study on different retrofitting measures adopted for strengthening a series of reinforced concrete (RC) beams. Four identical RC beam specimens were casted, out of which three specimens were strengthened by different schemes (viz., bolted hot rolled flat, bolted cold-formed steel channel, and carbon fibre reinforced polymer (CFRP) laminate, respectively) on their tension face and tested under four-point monotonic loading. This study focuses on the investigation of the flexural behaviour of these retrofitted beams, observed in terms of strength and stiffness. It was concluded that all retrofitting measures improved the structural performance of these beams. However, the cost involved with each strengthening mode was proportional to the improvement in the performance achieved.