• Title/Summary/Keyword: Seismic stations

Search Result 152, Processing Time 0.02 seconds

765kV Substations Earthquake Monitoring System and Preliminary Data Analysis (765kV 변전소 지진계측시스템 구축과 관측자료 예비분석)

  • Park, Dong-Hee;Yun, Kwan-Hee;Seo, Yong-Pyo;Kim, Byung-Chel
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.56-63
    • /
    • 2006
  • Facilities of 76skV Substation(S/S) play an important role in electric power supply grids. Various power facilities of 765kV S/S might be damaged enormously if a strong earthquake occurs. In an effort to mitigate possible earthquake disasters, KEPRI (Korea Electric Power Research Institute) set forth plans to verify seismic safety of the facilities of 765kV S/S. To accomplish the task, an earthquake monitoring systems is constructed at four 765kV S/S sites(Shin-AnSung, Shin-TaeBaek, Shin-SeoSan and Shin-GaPyung). Data from these earthquake monitoring stations are being transmitted via satellite communication. Currently, KEPRI is operating an earthquake monitoring system in freefield of Shin-SeoSan S/S (NSS) tentatively, Also, the data from NSS is preliminarily analyzed using the horizontal to vertical (H/V) spectrum ratio method. The method of H/V spectrum ratio has been used to infer site amplification without previous knowledge of near surface geology. The results of data analysis shorts good S/N ratio and amplification of 20-25 Hz by site effect. In the near future, the accumulated data is expected to provide a basis for assessing and predicting any damages to integrity of 765kV S/S facilities by earthquakes.

  • PDF

Characteristics of the bottom sediments from the continental shelf of the Korea Strait and some geochemical aspects of the shelf fine-grained sediments (한국 대한해협 대륙붕 표층 퇴적물의 특성과 세립퇴적물의 지구화학적 특성)

  • 박용안;김경렬
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.43-56
    • /
    • 1987
  • A study on sedimentation, geochemical behavior and seismic stratigrapht of the continental shelf sediments along the Korea Strait and a part of south and southeast offshore area of the Korea Peninsula was carried out. In the inner shelf floor with depth ranging up to 80m zonal distribution patterns of mud, sandy silt, and silty sand were observed. In the outer shelf, however, coarse sandy sediments are dominant, and shills and gravels were frequently observed. These observations seem to confirm the Holocene sedimentary processes on the continental shelves off the south, south to east coasts of Korea discussed by Park (1985 and 1986) and Park and Choi (1986). The suface sediments (upper most 5cm thick)from selected 9 stations were analyzed for Al,Mn, Fe,Cr,Ni,Cu,Zn and Pb in order to study geochemical behavior of the sediments in the study area. All data were normalized to Al to com,pensate the size effect of the sediments.In general,inner shelf sediments show slight enrichment compared to the outer shelf sediments.In particular,Pb and Zn show heavy enrichment in most of the sediments.to degrees comparable to those observed at the polluted Kwangyang and Masan Bay sediments.Thus,it is considered that rapid migration or movement of fine-grained sediments in the study area does exist. Three seismic stratigraphic units were analyzed based on the seismic records.The acoustic basement the lower sedimentary deposit(B)and the upper deposit(A)were observed.The strong reflectivity R,in particular, between unit A and B is considered to be an erosinal unconformity during the last Glacial time.

  • PDF

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.

Analysis of Crustal Velocity Structure Beneath Gangwon Province, South Korea, Using Joint Inversion of Receiver Functions and Surface Wave Dispersion (수신함수와 표면파 분산의 연합 역산을 사용한 강원도 지역 하부의 지각속도구조 분석)

  • Jeong-Yeon Hwang;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.277-291
    • /
    • 2023
  • To analyze the crustal velocity structures beneath 21 broadband seismic stations in Gangwon Province, South Korea, we first applied the H-κ stacking method to 139 teleseismic event data (Mw ≥ 5.8 and the epicentral distance of 30° - 90°) occurring between March 18, 2019 and December 31, 2022 to estimate the Moho depths and Vp/Vs ratios beneath each station. The Moho depths and Vp/Vs ratios from the H-κ stacking method range from 24.9 to 33.2 km depth and 1.695 - 1.760, respectively, and the estimated Vp/Vs ratios were applied to the joint inversion of receiver functions and surface wave dispersion to obtain 1-D crustal velocity models beneath each station. The resulting Moho depths range from 25.9 to 33.7 km depth, similar to the results from the H-κ stacking method. Moho depth results from the both methods are generally consistent with Airy's isostasy. The 1-D crustal velocity models confirm that the existence of 2 km thick low-velocity layers with P-wave velocities of 5 km/s or less at some stations in the Taebaeksan basin, and at the stations CHNB and GAPB in northern Gangwon Province, which are located above the Cenozoic sedimentary layer. The station SH2B, although not overlying a sedimentary layer, has a low P-wave velocity near the surface, which is probably due to various factors such as weathering of the bedrock. We also observe a velocity inversion with decreasing velocity with depth at all stations within 4 - 12 km depths, and mid-crustal discontinuities possibly due to density differences in the rocks at around 10 km depth below some stations.

Analysis on the source characteristics of three earthquakes nearby the Gyeongju area of the South Korea in 1999 (1999년 경주 인근에서 3차례 발생한 지진들의 지진원 특성 분석)

  • Choi, Ho-Seon;Shim, Taek-Mo
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.509-515
    • /
    • 2009
  • Three earthquakes with local magnitude ($M_L$) greater than 3.0 occurred on April 24, June 2 and September 12 in 1999 nearby the Gyeongju area. Redetermined epicenters were located within the radius of 1 km. We carried out waveform inversion analysis to estimate focal mechanism of June 2 event, and P and S wave polarity and their amplitude ratio analysis to estimate focal mechanisms of April 24 and September 12 events. June 2 and September 12 events had similar fault plane solutions each other. The fault plane solution of April 24 event included those of other 2 events, but its distribution range was relatively broad. Focal mechanisms of those events had a strike slip faulting with a small normal component. P-axes of those events were ENE-WSW which were similar to previous studies on the P-axis of the Korean Peninsula. Considering distances between epicenters, similarities of seismic waves and sameness of polarities of seismic data recorded at common seismic stations, these events might occurred at the same fault. The seismic moment of June 2 event was estimated to be $3.9\;{\times}\;10^{14}\;N{\cdot}m$ and this value corresponded to the moment magnitude ($M_W$) 3.7. The moment magnitude estimated by spectral analysis was 3.8, which was similar to that estimated by waveform inversion analysis. The average stress drop was estimated to be 7.5 MPa. Moment magnitudes of April 24 and September 12 events were estimated to be 3.2 and 3.4 by comparing the spectrum of those events recorded at common single seismic station.

Monitoring North Korea Nuclear Tests: Comparison of 1st and 2nd Tests (북한 핵실험 모니터링 : 1, 2차 비교)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Che, Il-Young;Sheen, Dong-Hoon;Shin, Jin-Soo;Cho, Chang-Soo;Lee, Hee-Il
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • Two suspicious events, which were claimed as underground nuclear tests by North Korea, were detected in the northern Korean Peninsula on October 9, 2006 and May 25, 2009. The KIGAM and Korea-China Joint seismic stations are distributed uniformly along the boundaries between North Korea and adjacent countries. In this study, the data from broadband stations with the distance of 200 to 550 km from the test site are used to analyze and compare two nuclear tests of North Korea. By comparing the time differences of the Pn-wave arrival times of 1st and 2nd tests at multiple stations, the relative locations of two test sites could be calculated precisely. From the geometrical calculation with the velocity of Pn wave $V_{Pn}$ = 8 km/s, the 2nd test site is estimated to move in the WNW direction from 1st one with the distance of 2 km. Body wave magnitude, mb of the 2nd test, which was announced officially as the network average of 4.5, varies widely with the directional location of stations from 4.1 to 5.2. The magnitude obtained from Lg wave, $m_b$(Lg), shows less variation between 4.3 to 4.7 with the average of 4.6. The moving-window spectra of time traces of 1st and 2nd tests show very similar pattern with different scale level. In addition, the corner frequencies of P wave of 1st and 2nd tests at each station show no or negligible difference. This indicates the burial depths of two tests might be very similar. The relative yield amount of the 2nd test is estimated 8 times larger than that of the 1st from the weighted average of ground-velocity amplitude ratios.

Ground Motion Evaluation from the Fukuoka Earthquake (후쿠오카 지진('05. 3. 20, M=7.0)의 지진동 감쇠특성 분석)

  • Park Donghee;Yun Kwanhee;Chang Chun-Joong;Choi Weon-Hack;Lee Dae-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.87-92
    • /
    • 2005
  • The ground-motion (GM) attenuation relations available in Korea has required the validation process for large earthquakes since most of them were developed based on small earthquake database, The Fukuoka earthquake (M=7.0) that occurred near the Korean Peninsula provides invaluable data to indirectly evaluate the attenuation characteristics of the strong GM in Korea. The GM levels (PGA, SA) obtained from the KIK-net downhole stations near the epicenter (R<100km) are reasonably predicted by the GM attenuation relation developed by KEPRI in 2003 for the Kori NPP site, the result of which validates the use of KEPRI GM attenuation relation for predicting GM induced by future large earthquakes. Also, the comparison between the Osaki spectra and response spectra of KIK-net downhole data reveals that the amplitude levels of Osaki spectra are higher than the spectra from KIK-net stations which are believed to be installed at the seismic basement.

  • PDF

Ground Motion Evaluation from the Fukuoka Earthquake (후쿠오카 지진('05. 3. 20, M=7.0)의 지진동 감쇠특성 분석)

  • Park, Dong-Hee;Yun, Kwan-Hee;Chang, Chun-Joong;Choi, Weon-Hack;Lee, Dae-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.109-113
    • /
    • 2005
  • The ground-motion (GM) attenuation relations available in Korea has required the validation process for large earthquakes since most of them were developed based on small earthquake database. The Fukuoka earthquake (M=7.0) that occurred near the Korean Peninsula provides invaluable data to indirectly evaluate the attenuation characteristics of the strong GM in Korea. The GM levels (PGA, SA) obtained from the KIK-net downhole stations near the epicenter (R<100km) are reasonably predicted by the GM attenuation relation developed by KEPRI in 2003 for the Kori NPP site, the result of which validates the use of KEPRI GM attenuation relation for predicting GM induced by future large earthquakes. Also, the comparison between the Osaki spectra and response spectra of KIK-net downhole data reveals that the amplitude levels of Osaki spectra are higher than the spectra from KIK-net stations which are believed to be installed at the seismic basement.

  • PDF

An Analysis of the Fault Plane Solution and Intensity on the Iksan Earthquake of 22 December 2015 (2015년 12월 22일 발생한 익산지진의 단층면해와 진도 분석)

  • Kim, Jin-Mi;Kyung, Jai Bok;Kim, Kwang-Hee
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.561-569
    • /
    • 2017
  • Fault plane solutions of the Iksan earthquake ($M_L=3.85$) and two aftershocks were obtained using the FOCMEC (FOCal MEChanism determination) program. The main event showed the characteristic of strike slip faulting with reverse component. It has the fault planes with NE-SW or NW-SE direction. This is similar to the fault characteristics of earthquake pattern in the inland area of the Korean Peninsula. In order to detect micro-earthquake events, continuous seismic waveform data of the thirteen seismic stations within a radius of 100km from epicenter were analyzed by PQLII program (PASSCAL, 2017) for the period from December 15, 2015 to January 22, 2016. The epicenters of nineteen micro-events were newly determined by Hypoinverse-2000 program. They are not concentrated along some lineaments or fault lines. The intensity of the Iksan earthquake was obtained by estimating the telephone inquiries, the degree of ground shaking or damage all around the southern peninsula. The instrumental intensity was also obtained using PGA (Peak Ground Acceleration) records. As a result, the maximum MM intensity was estimated to be V near the epicenter.

A Comparison Study of the Site Amplification Characteristics and Seismic Wave Energy Levels at the Sites near Four Electric Substations (4개 변전소시설 부지 인근관측소의 지반증폭 특성 및 파형에너지 수준 비교 연구)

  • Yoo, Seong-Hwa;Kim, Jun-Kyoung;Wee, Soung-Hoon
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.40-51
    • /
    • 2016
  • The problem has been pointed out that the domestic design response spectrum does not reflect site amplification, particularly in the high frequency bands, including the fact that site specific response spectrum from the observed ground motions appears relatively higher than design response spectrum. Among various methods, this study applied H/V spectral ratio of ground motion for estimating site amplification. This method, originated from S waves and Rayleigh waves, recently has been extended to Coda waves and background noise for estimating site amplification. For limited time of periods, 4 electric substation sites had operated seismic stations at two separate locations (bedrock and borehole) within each substation site. H/V spectral ratio of S wave, Coda wave, and background noise, was applied to 36 accelerations of 3 macro earthquakes (Odaesan, Jeju and Gongju earthquakes), larger than magnitude 3.4. observed simultaneously at each bedrock location within 4 electric substation sites. Site amplifications at the bedrock location of 4 sites were compared among S wave, Coda wave energy, and background noise, and then compared to the previous results from the borehole location data. The site classification was also tried using resonancy frequency information at each site and location. The results suggested that all the electric substation sites showed similar site amplification patterns among S wave, Coda wave, and background noise. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other results using different method can give us much more information about dynamic amplification of domestic sites characteristics and site classification.