• Title/Summary/Keyword: Seismic retrofitted

Search Result 235, Processing Time 0.021 seconds

Nonlinear dynamic response of reinforced concrete building retrofitted with buckling restrained braces

  • Guneyisi, Esra Mete;Tunca, Osman;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1349-1362
    • /
    • 2015
  • This paper presents an analytical study aimed at evaluating the effectiveness of using buckling-restrained braces (BRBs) in mitigating the seismic response of a case study 6 storey reinforced concrete (RC) building. In the design of the BRBs with non-prismatic cross-sections, twelve combinations of ${\alpha}$ and ${\beta}$ design parameters that influence the strength and stiffness of the BRBs, respectively, were considered. The response of the structure with and without BRBs under earthquake ground accelerations were evaluated through nonlinear dynamic analysis. Two sets of ground motions representative of the design earthquake with 10% and 50% exceedance probability in fifty years were taken into account. By comparing the structural performance of the original and buckling restrained braced structures, it was observed that the use of the BRBs were very effective in mitigating the seismic response as a retrofit scheme. However, the selection of the strength and stiffness parameters of the BRBs had considerable effect on the response characteristics of RC structures. For instance, by increasing the value of ${\alpha}$ and by decreasing the value of ${\beta}$ of the buckling-restrained braces, the maximum deformation demand of the structures increased.

Structural Performance Enhancement of Seismic Retrofitted Column Using New Reinforcing Materials (신보강재로 보수 보강한 기둥의 구조 성능 개선)

  • Oh, Chang-Hak;Han, Sang-Whan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • Reinforced concrete frame buildings in regions of low to moderate seismicity are typically designed only for gravity loads with non-seismic detailing provisions of the code. These buildings possess strong beam-weak column, which brings about the brittle structural performance like the column sidesway failure mechanism during the strong lateral load. The objective of this paper is to enhance the column strength and deformation capacity for reconfiguring the structural failure mode by averting a column soft-story collapse and moving to a more ductile beam-sides way mechanism suing new reinforcing materials. Aramid fiber sheet and reinforcing rod-composite materials was used for this purpose. The column was modeled by the 2/3 scale experimental specimen retested. According to the concept of the capacity design, the damaged column was strengthened by the column jacketing using new reinfocing materials such as rod-composite materials. In conclusion, the improvement of the flexural strength is observed and the capacity of the energy dissipation and the ductility is enhanced, too.

  • PDF

Design of Supplemental Dampers for Seismic Reinforcement of Structures (구조물의 내진보강을 위한 부가 감쇠장치의 설계)

  • Kim, Jin-Koo;Choi, Hyun-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.109-119
    • /
    • 2004
  • A design procedure for velocity-dependent supplemental dampers, such as viscous or viscoelastic dampers, required to meet the desired performance objectives was developed using displacement spectra. The amount of supplemental damping required to satisfy given performance limit state was obtained first from the nonlinear static procedure using displacement spectra, then dampers were appropriately distributed throughout the stories to realize the required damping. The proposed method was applied to multi-story steel frames, and the structures were analyzed by time history analysis to validate the accuracy of the design procedure. According to the analysis results the maximum displacements of the model structures retrofitted by the supplemental dampers turned out to be restrained well within the given target values.

Analysis on damage of RC frames retrofitted with buckling-restrained braces based on estimation of damage index

  • Liu, Ruyue;Yang, Yong
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.781-791
    • /
    • 2019
  • Earthquakes most often induce damage to structures, resulting in the degradation or deterioration of integrity. In this paper, based on the experimental study on 5 RC frames with different span length and different layout of buckling-restrained braces, the seismic damage evaluation law of RC frame with buckling-restrained braces was analyzed, and then the seismic damage for different specimens was calculated using different damage models to study the damage evolution. By analyzing and comparing the observation in test and the calculated results, it could be found that, damage evolution models including Gosain model, Hwang model as well as Ou model could better simulate the development of damage during cyclic loading. Therefore, these 3 models were utilized to analyze the development of damage to better demonstrate the evolution law for structures with different layout of braces and under different axial compression ratios. The results showed that from all layouts of braces studied, the eccentrically braced frame behaved better under larger deformation with the damage growing slowly. It could be deduced that the link beam benefited the seismic performance of structure and alleviated the damage by absorbing high values of energy.

Experimental and numerical study about seismic retrofitting of corrosion-damaged reinforced concrete columns of bridge using combination of FRP wrapping and steel profiles

  • Afshin, Hassan;Shirazi, Mohammad R. Nouri;Abedi, Karim
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.231-251
    • /
    • 2019
  • In the present study, a numerical and experimental investigation has been carried out on the seismic behavior of RC columns of a bridge which damaged under corrosive environments and retrofitted by various techniques including combined application of CFRP sheets and steel profiles. A novel hybrid retrofitting procedure, including the application of inner steel profiles and outer peripheral CFRP sheets, has been proposed for strengthening purpose. Seven large-scale RC columns of a Girder Bridge have been tested in the laboratory under the influence of simultaneous application of constant axial load and the lateral cyclic displacements. Having verified the finite element modeling, using ABAQUS software, the effects of important parameters such as the corrosion percentage of steel rebars and the number of CFRP layers have been evaluated. Based on the results, retrofitting of RC columns of the bridge with the proposed technique was effective in improving some measures of structural performance such as lateral strength degradation and higher energy absorption capability. However, the displacement ductility was not considerably improved whereas the elastic stiffness of the specimens has been increased.

Effect of link length in retrofitted RC frames with Y eccentrically braced frame

  • INCE, Gulhan
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.553-564
    • /
    • 2022
  • Many existing reinforced concrete (RC) structures need to be strengthening for reason such as poor construction quality, low ductility or designing without considering seismic effects. One of the strengthening methods is strengthening technique with eccentrically braced frames (EBFs). The characteristic element of these systems is the link element and its length is very important in terms of seismic behavior. The link element of Y shaped EBF systems (YEBFs) is designed as a short shear element. Different limits are suggested in the literature for the link length. This study to aim experimentally investigate the effect of the link length for the suggested limits on the behavior of the RC frame system and efficiency of strengthening technique. For this purpose, a total of 5 single story, single span RC frame specimens were produced. The design of the RC frames was made considering seismic design deficiencies. Four of the produced specimens were strengthened and one of them remained as bare specimen. The steel YEBFs were used in strengthening the RC frame and the link was designed as a shear element that have different length with respect to suggested limits in literature. The length of links was determined as 50mm, 100mm, 150mm and 200mm. All of the specimens were tested under cyclic loads. The obtained results show that the strengthening technique improved the energy consumption and lateral load bearing capacities of the bare RC specimen. Moreover, it is concluded that the specimens YB-2 and YB-3 showed better performance than the other specimens, especially in energy consumption and ductility.

Damage Probabilities according to the Structural Characteristics of Bridges and the Determination of Target Ductilities (교량의 구조특성에 따른 손상확률과 목표연성도 결정)

  • Sun, Chang-Ho;Lee, Jong-Seok;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • The target performance of a current seismic design code is to achieve collapse-prevention in order to minimize casualties. Existing structures are also being retrofitted to meet this target performance. This seismic performance seems to have been achieved in recent great overseas earthquakes, but the accompanying enormous economic loss is pointed out as a new problem. A new seismic design concept over the current target performance is required to reduce economic loss, in which a target performance is determined by the damage probability in order to control the damage levels of structures. In this study, the seismic behavior of bridges having different characteristics was investigated by nonlinear seismic analyses, and fragility curves with respect to a reference damage level were derived. Based on these results, the characteristics of target ductilities satisfying a target damage probability were investigated.

Seismic Responses of Highway Multiple Span Steel Bridges Retrofitted by Protective Devices (저감장치에 의해 개선된 고속도로 다경간 강교량의 지진응답)

  • Choi, Eun-Soo;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.49-59
    • /
    • 2004
  • A previous study evaluated the seismic response of typical multi-span simply supported (MSSS) and multi-span continuous (MSC) steel-girder bridges in the central and southeastern United States. The results showed that the bridges were vulnerable to damage resulting from impact between decks, and large ductility demands on nonductile columns. Furthermore, fixed and expansion bearings were likely to fail during strong ground motion. In this paper, several retrofit measures to improve the seismic performance of typical multi-span simply supported and multi-span continuous steel girder bridges are evaluated, including the use of elastomeric bearings, lead-rubber bearings, and restrainer cables. It is determined that iead-rubber bearings are the most effective retrofit measure for reducing the seismic vulnerability of typical bridges. While isolation provided by elastomeric bearings limits the forces into the columns, the added flexibility results in pounding between decks in the MSSS steel-girder bridge. Restrainer cables, which are becoming a common retrofit measure, are only moderately effective in reducing the seismic vulnerability of MSSS and MSC steel girder bridges.

  • PDF

Evaluation of seismic response of soft-storey infilled frames

  • Santhi, M. Helen;Knight, G.M. Samuel;Muthumani, K.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.423-437
    • /
    • 2005
  • In this study two single-bay, three-storey space frames, one with brick masonry infill in the second and third floors representing a soft-storey frame and the other without infill were designed and their 1:3 scale models were constructed according to non-seismic detailing and the similitude law. The models were excited with an intensity of earthquake motion as specified in the form of response spectrum in Indian seismic code IS 1893-2002 using a shake table. The seismic responses of the soft-storey frame such as fundamental frequency, mode shape, base shear and stiffness were compared with that of the bare frame. It was observed that the presence of open ground floor in the soft-storey infilled frame reduced the natural frequency by 30%. The shear demand in the soft-storey frame was found to be more than two and a half times greater than that in the bare frame. From the mode shape it was found that, the bare frame vibrated in the flexure mode whereas the soft-storey frame vibrated in the shear mode. The frames were tested to failure and the damaged soft-storey frame was retrofitted with concrete jacketing and, subjected to same earthquake motions as the original frames. Pushover analysis was carried out using the software package SAP 2000 to validate the test results. The performance point was obtained for all the frames under study, therefore the frames were found to be adequate for gravity loads and moderate earthquakes. It was concluded that the global nonlinear seismic response of reinforced concrete frames with masonry infill can be adequately simulated using static nonlinear pushover analysis.

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.