• 제목/요약/키워드: Seismic retrofit system

검색결과 95건 처리시간 0.035초

Study on Integrity Assessment of Pile Foundation Based on Seismic Observation Records

  • KASHIWA, Hisatoshi
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.369-376
    • /
    • 2020
  • Given the importance of quickly recovering livelihoods and economic activity after an earthquake, the seismic performance of the pile foundation is becoming more critical than before. In order to promote seismic retrofit of the pile foundations, it is necessary to develop a method for evaluating the seismic performance of the pile foundation based on the experimental data. In this paper, we focus on the building that was suffered severe damage to the pile foundation, conduct simulation analyses of the building, and report the results of evaluating the dynamic characteristics when piles are damaged using a system identification method. As a result, an analysis model that can accurately simulate the behavior of the damaged building during an earthquake was constructed, and it was shown that the system identification method could extract dynamic characteristics that may damage piles.

복합하중을 고려한 교체 가능한 강재 브레이스 시스템의 내진성능 (Seismic Performance of Replaceable Steel Brace System Subjected to Combined Loadings)

  • 노경민;김윤성;김민숙;이영학
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.43-50
    • /
    • 2023
  • This study aims to assess the seismic performance of retrofitted reinforced concrete columns using a Replaceable Steel Brace (RSB) system, subjected to combined axial, lateral, and torsional loadings. Through experimental testing, one non-retrofitted concrete column specimen and two retrofitted specimens with variable sliding slot lengths were subjected to eccentric lateral loads to simulate realistic seismic loading. The retrofitted specimens with RSBs exhibited enhanced resistance against shear cracking, effective torsional resistance, and demonstrated the feasibility of easy replacement. The RSB system substantially improved seismic performance, achieving approximately 1.7 times higher load capacity and 3.5 times greater energy dissipation compared to non-retrofitted column, thus validating its efficacy under combined loading conditions.

Seismic retrofit system made of viscoelastic polymer composite material and thin steel plates

  • Nasab, Mohammad Seddiq Eskandari;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.153-164
    • /
    • 2022
  • In this study, a series of cyclic loading tests were performed on viscoelastic dampers (VED) composed of viscoelastic polymer composite material and thin steel plates to observe the variation of the mechanical properties under different loading conditions. A mathematical model was developed based on the Kelvin-Voigt and Bouc-Wen models to formulate the nonlinear force-displacement relationship of the viscoelastic damper. The accuracy of the proposed mathematical model was verified using the data obtained from the tests. The mathematical model was applied to analyze a reinforced concrete framed structure retrofitted with viscoelastic dampers. Nonlinear dynamic analysis results showed that the average maximum inter-story drift ratios of the retrofitted structure met the target limit state after installing the VED. In addition, both the maximum and residual displacements were significantly reduced after the installation of the VED.

리모델링 건축물을 위한 변위증폭형 제진시스템 개발 (Development of Displacement Amplification Damping System for the Remodeling Buildings)

  • 박영미;김혜원;박기홍
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.11-12
    • /
    • 2016
  • Buildings which was constructed before 1988 were not satisfied seismic design code. Thus, most of these buildings have to retrofit for remodeling. This study proposed the steel slit damper system with displacement-amplification device. It could maximize the effectiveness of a damper system in controlling seismic response of a building by amplifying story drift induced to damper. In this study, the proposed system was verified the effect of displacement-amplification using the analytical and experimental study. From the analysis and experiment, it was found that the propsed damping system showed a stable hysteric behavior with excellent energy dissipation capacity. Therefore the proposed system will make a good seismic performance and economical benefits.

  • PDF

Seismic multi-level optimization of dissipative re-centering systems

  • Panzera, Ivan;Morelli, Francesco;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.129-145
    • /
    • 2020
  • Seismic resilience is a key feature for buildings that play a strategic role within the community. In this framework, not only the structural and non-structural elements damage but also the protracted structural dysfunction can contribute significantly to overall seismic damage and post-seismic crisis situations. Reduction of the residual and peak displacements and energy dissipation by replaceable elements are some effective aspects to pursue in order to enhance the resilience. Control systems able to adapt their response based on the nature of events, such as active or semi-active, can achieve the best results, but also require higher costs and their complexity jeopardizes their reliability; on the other hand, a passive control system is not able to adapt but its functioning is more reliable and characterized by lower costs. In this study it is proposed a strategy for the optimization of the dissipative capacity of a seismic resistant system obtained placing in parallel two different groups dissipative Re-Centering Devices, specifically designed to enhance the energy dissipation, one for the low and the other for the high intensity earthquakes. In this way the efficiency of the system in dissipating the seismic energy is kept less sensitive to the seismic intensity compared to the case of only one group of dissipative devices.

개구부 격리형 시스템으로 보강된 철근콘크리트 골조의 내진성능 (Seismic Performance of Reinforced Concrete Frame Retrofitted with Opening-Isolated Type System)

  • 박완신;김선우;정현석
    • 대한건축학회논문집:구조계
    • /
    • 제36권2호
    • /
    • pp.137-144
    • /
    • 2020
  • The purpose of this study is to experimentally evaluate the effect of improving seismic performance by applying the details of seismic reinforcement to the reinforced concrete frame with non-seismic details while maintaining the original opening shape. In this study, based on CF specimens with specific seismic details, a total of four full scale specimens were designed and fabricated. The main variables are the width and spacing of steel dampers installed in the upper and lower parts of seismic reinforcement details, and the presence or absence of torsion springs installed in the hinges. As a result of the test, it was evaluated to be helpful for seismic retrofit and opening isolation of steel dampers installed at the upper and lower parts of the seismic reinforcement details and torsion springs installed at the joints. In particular, CFR2S specimens with torsion springs showed the best performance in terms of strength, stiffness and energy dissipation capacity with increasing displacement angle.

변위기반설계법에 의한 철근콘크리트 기둥의 보강설계 (Retrofit Design of RC Column by Displacement-Based-Design Method)

  • 임청권;권민호;하금희;김진섭
    • 한국산학기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.2804-2811
    • /
    • 2012
  • 본 연구에서는 직접변위기반 설계법에 의하여 철근콘크리트 기둥이 목표변위에 도달하도록 하는 보강설계를 수행하였다. 철근콘크리트 기둥의 비선형 거동은 등가 선형 시스템으로 단순화하여 해석한다. 먼저 목표변위를 결정하고, 단자유도 시스템의 등가고유주기를 추정하기 위하여 탄성 변위스펙트럼을 작성하였다. 고유주기가 결정되면 시스템의 질량을 근거로 강성을 이용하여 요구강도를 계산한다. 이후 비선형 층상화 단면해석을 통해 얻어진 하중-변위관계에 따라 요구강도를 만족하는 보강설계를 수행하였다. 비선형 층상화 단면해석 프로그램을 개발하고 보강설계 절차를 제안하였으며 이를 적용한 결과, 보강설계를 통해 보강한 철근콘크리트 기둥은 보강하지 않은 기둥과 비교하여 내진 성능이 향상 된 것을 확인 할 수 있었다.

A ductile steel damper-brace for low-damage framed structures

  • Javidan, Mohammad Mahdi;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.325-337
    • /
    • 2022
  • In this research, an earthquake-resistant structural system consisting of a pin-connected steel frame and a bracing with metallic fuses is proposed. Contrary to the conventional braced frames, the main structural elements are deemed to remain elastic under earthquakes and the seismic energy is efficiently dissipated by the damper-braces with an amplification mechanism. The superiority of the proposed damping system lies in easy manufacture, high yield capacity and energy dissipation, and an effortless replacement of damaged fuses after earthquake events. Furthermore, the stiffness and the yield capacity are almost decoupled in the proposed damper-brace which makes it highly versatile for performance-based seismic design compared to most other dampers. A special attention is paid to derive the theoretical formulation for nonlinear behavior of the proposed damper-brace, which is verified using analytical results. Next, a direct displacement-based design procedure is provided for the proposed system and an example structure is designed and analyzed thoroughly to check its seismic performance. The results show that the proposed system designed with the provided procedure satisfies the given performance objective and can be used for developing highly efficient low-damage structures.

마찰형 감쇠기가 설치된 다자유도 비선형 건물의 응답특성 (Response Characteristics of a Nonlinear MDOF Structure with Friction Dampers)

  • 이성경;박지훈;문병욱;민경원;이상현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.561-567
    • /
    • 2007
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

  • PDF