• Title/Summary/Keyword: Seismic retrofit method

Search Result 148, Processing Time 0.025 seconds

Seismic Retrofit of High-Rise Building with Deformation-Dependent Oil Dampers against Long-Period Ground Motions

  • Aono, Hideshi;Hosozawa, Osamu;Shinozaki, Yozo;Kimura, Yuichi
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.177-186
    • /
    • 2016
  • Along the subduction-zone of the western Japanese islands, large earthquakes are expected occur around the middle of this century, and long-period ground motions will reach major urban areas, shaking high-rise buildings violently. Since some old high-rise buildings were designed without considering long-period ground motions, reinforcing such buildings is an important issue. An effective method to reinforce existing high-rise buildings is installing additional dampers. However, a problem with ordinary dampers is that they require reinforcement of surrounding columns and girders to support large reaction forces generated during earthquake ground motion. To solve this problem, a deformation-dependent oil damper was developed. The most attractive feature of this damper is to reduce the damping force at the moment when the frame deformation comes close to its maximum value. Due to this feature, the reinforcement of columns, girders, and foundations are no longer required. The authors applied seismic retrofitting with a deformation-dependent oil damper to an existing 54-story office building (Shinjuku Center Building) located in Shinjuku ward, Tokyo, in 2009 to suppress vibration under the long period earthquake ground motions. The seismic responses were observed in the 2011 Tohoku Earthquake, and it is clarified that the damping ratio was higher and the response lower by 20% as compared to the building without dampers.

Displacement Based Seismic Design of Steel jacket Retrofitted Reinforced Concrete Column (Steel-Jacket 보강 철근콘크리트 기둥의 변위기반 내진설계)

  • Jung, In-Kju;Cho, Chang-Geun;Park, Moon-Ho;Park, Soon-Eung;Nam, Yoo-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.197-198
    • /
    • 2009
  • This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete structure and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness.

  • PDF

Analytical Study on the Seismic Retrofit Method of Irregular Piloti Building Using Knee-Brace (Knee - Brace를 활용한 비정형 필로티 건물의 내진보강방안에 대한 해석적 연구)

  • Yoo, Suk-Hyung;Kim, Dal-Gee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Torsional behavior due to the plane irregularities of the piloti building can cause excessive story drift in the torsionally outermost column, which can lead to shear failure of the column. As a seismic retrofit method that can control the torsional behavior of the piloti building, the expansion of RC wall, steel frame or steel brace may be used, but such methods may hinder the openness of the piloti floor. Therefore, in this study, linear dynamic analysis and nonlinear static analysis for piloti buildings retrofitted by knee brace were performed, and seismic performance evaluation and torsion control effect of knee brace were analyzed. The results showed that the shear force of the column increased when the piloti building retrofitted by knee brace, but it was effective in controlling the torsional deformation. In case of retrofit between knee brace and column by 30°, the shear force of the column increased less than that of 60°, and the lateral displacement of column was decreased in the order of □, ◯ and H in cross-section.

Application of three-dimensional modified inclined braces to control soft-story buildings

  • Nodehi, Soroush;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.811-824
    • /
    • 2022
  • Despite its disadvantages, soft story can reduce the damage to the upper floors by concentrating drift in that specific story provided that large drifts are avoided. Gapped-Inclined Brace (GIB) with reduced P-delta effects and the control of soft story stiffness makes it possible to take advantage of the soft story in buildings and increase their capacity for energy dissipation. OpenSees software is used in this study to validate and modify the GIB model's shortcomings. Also, the analysis method for this element is changed for design. The modified element is evaluated in 3D analysis. Finally, to retrofit an existing building, this element is used. Based on the Iranian seismic code, a six-story reinforced concrete building is modelled and studied with 3D analysis. In this building, the construction shortcomings and elimination of infills on the ground floor cause the formation of a soft story. Results of nonlinear static analysis, nonlinear dynamic, and incremental dynamic analysis using both components of seismic acceleration applied to the structure at different angles and the fragility curves indicate the improvement of the retrofitted structure's performance using the modified element to reach the required performance level following the retrofit code.

Seismic Analysis of Underground RC Structures considering Interface between Structure and Soil (경계면 요소를 고려한 지하 철근콘크리트 구조물의 지진해석)

  • 남상혁;변근주;송하원;박성민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.87-92
    • /
    • 2000
  • The real situation of an underground reinforced concrete(RC) structure with the surrounding soil medium subjected to seismic load is quite difficult to be simulated through an expensive work and, even if it is possible to arrange such an experiment, it will be too expensive. So development of analytical method can be applied usefully to seismic design and seismic retrofit through an analysis of seismic behavior and seismic performance evaluation. A path-dependent constitutive model for soil that can estimate the response of soil layer is indispensible for dealing with kinematic interaction of RC/soil entire system under seismic loads. And interface model which deals with the dynamic interaction of RC/soil entire system is also necessary. In this study, finite element analysis program that can consider path-dependent behavior of RC and soil, and interfacial behavior between RC and soil is developed for rational seismic analysis of RC/soil entire system. Using this program, nonlinear behavior of interface between RC and soil is analyzed, and the effect of interfacial behavior to entire system is investigated.

  • PDF

Application of the Seismic Response Reduction Technology for Boramae Deokyo Building Remodeling (보라매 대교빌딩 리모델링을 위한 지진응답 저감기술 적용사례)

  • Park, Young-Mi;Park, Ki-Hong;Jo, Seong-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.134-136
    • /
    • 2013
  • In general, the seismic retrofit is almost essential to extend and remodel aged buildings. Because domestic seismic design code has been enhanced, seismic performance should be secure for aged building remodeling. Seismic response reduction device (damper) is lately appling to ensure seismic performance. This device is economical efficiency method that can reduce the load to foundation and the range of structural reinforcements, shorten of construction period. New shaped steel damper was applied for extension and remodeling construction for Boramae Deakyo building. As a result, the economy and shortening of construction period was achieved.

  • PDF

Earthquake Damae Ratio Estimation and Seismic Capacity Evaulation of Existing unreinforced masonry building in Korea (한국 조적조 건물의 내진성능 및 지진피해율 평가)

  • Kang, Dae-Eon;Yang, Won-Jik;Yi, Waon-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.258-265
    • /
    • 2005
  • The purpose of this study is to provide basic information for unreinforced masonry building in Korea by application of the proposed seismic evaluation method. In this study, seismic capacities of 50 existing unreinforced masonry buildings are evaluated based on the proposed method. Also, relationships of seismic capacities between Korean earthquake damage ratios of Korean unreinforced masonry buildings are estimated. Results of this study were as follows; 1)Seismic retrofit was needed $4{\sim}48%$ in Korean unreinforced masonry buildings. 2)Korean unreinforced masonry buildings were expected to have severe damage under the earthquake intensity level experienced in Japan.

  • PDF

Seismic performance improvement of RC buildings with external steel frames

  • Ecemis, Ali Serdar;Korkmaz, Hasan Husnu;Dere, Yunus
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.343-353
    • /
    • 2021
  • In this study, in order to improve the seismic performance of existing reinforced concrete (RC) framed structures, various external attachment of corner steel frame configurations was considered as a user-friendly retrofitting method. The external steel frame is designed to contribute to the lateral stiffness and load carrying capacity of the existing RC structure. A six-story building was taken into account. Four different external corner steel frame configurations were suggested in order to strengthen the building. The 3D models of the building with suggested retrofitting steel frames were developed within ABAQUS environment using solid finite elements and analyzed under horizontal loadings nonlinearly. Horizontal top displacement vs loading curves were obtained to determine the overall performance of the building. Contributions of steel and RC frames to the carried loads were computed individually. Load/capacity ratios for the ground floor columns were presented. In the study, 3D rendered images of the building with the suggested retrofits are created to better visualize the real effect of the retrofit on the final appearance of the façade of the building. The analysis results have shown that the proposed external steel frame retrofit configurations increased the lateral load carrying capacity and lateral stiffness and can be used to improve the seismic performance of RC framed buildings.

Evaluation Test for the Bridges Retrofitted Seismically with LRB (LRB로 내진보강된 교량의 성능검증 실험)

  • Kwahk, Im-Jong;Cho, Chang-Beck;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.109-112
    • /
    • 2006
  • In this study, an approach that installs seismic isolation bearings was proposed for the seismic retrofit of the existing bridges. The method that replaces all existing bearings with seismic isolators was proposed already. However, in this study, we recommend to utilize the existing bearings for the benefit of safety and cost. According to our proposal, the seismic isolators do not support vertical loads but they just function as the period shifter and the horizontal damper. To verify this approach experimentally, the real scale bearings and isolators for the real highway bridges were designed and fabricated. And the responses of this isolated bridges to the assumed earthquakes were determined by the pseudo dynamic test scheme. The test results were also compared to the responses computed by the well known structural analysis software to check the reliability of the test. From the test results, we found that the retrofitted bridges using the proposed method showed stable performances under earthquakes.

  • PDF

An Experimental Study on Seismic Performance of Two-story Reinforced Concrete Frames Retrofitted with Internal Steel Frame and Wall Type Friction Damper (내부 철골끼움골조 및 벽체형 마찰댐퍼(WFD)로 보강된 2층 철근콘크리트골조 내진성능에 대한 실험적 연구)

  • Yoo, Chang-Gi;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.64-72
    • /
    • 2022
  • In this study, in order to confirm the seismic performance of reinforced concrete frames retrofitted with Wall Friction Damper(WFD), the test was conducted by setting two-story Reinforced concrete frames (reference specimen, OMF-N and specimen retrofitted with internal H-shaped steel frame and WFD, OMF-ALL(H)) as main variables. The WFD Seismic Retrofit Method is a mixture of strength improvement and energy dissipation methods. To prevent the pre-destruction of existing structure by friction force before sufficient energy dissipation of WFD, the internal H-shaped steel frame and chemical anchor that penetrates the side of the beam were used to install WFD. According to the test results, the OMF-N specimen showed an brittle failure pattern caused by the shear force of the R/C column after the maximum strength was expressed. The OMF-ALL(H) specimen showed that the reduction of pinching effect and the failure of the RC column occurred. Also, the maximum strength, cumulative energy dissipation and ductility of OMF-ALL(H) increased 3.01 times, 7.2 times and 1.72 times for OMF-N. As a results, test results revealed that the WFD Seismic Retrofit Method installed on Reinforced concrete structure improves the seismic performance and the strengthening effect is valid.