• Title/Summary/Keyword: Seismic response of a structure-soil system

Search Result 106, Processing Time 0.029 seconds

The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.425-434
    • /
    • 2019
  • The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.

Study on Seismic Response of Wall-Slab Apartment Building Sturucture Considering the Stiffnesses of a Foundation-Soil System (기초지반강성을 고려한 벽식구조 아파트의 지진응답에 관한 연구)

  • 김지원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.167-175
    • /
    • 2000
  • Seismic analyses of structures can`t be performed without considering the effect of soil-structure interaction and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show a significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out assuming a rigid base and ignoring the characteristics of a foundation and the properties of the underlying soil. In this study, seismic analyses of apartment buildings of a particular wall-slab structural type were carried out comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Wall-slab type low-rise or mid-height apartment buildings built on the deep soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is too safe but uneconomical to utilize the design spectra of UBC-97 for the seismic analysis of a wall-slab type apartment buildings due to the too conservative design.

  • PDF

Seismic response of foundation-mat structure subjected to local uplift

  • El Abbas, Nadia;Khamlichi, Abdellatif;Bezzazi, Mohammed
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.285-304
    • /
    • 2016
  • The effects of large rotations and p-delta on the dynamic response of a structure subjected to seismic loading and local uplift of its foundation were analyzed in this work. The structure was modeled by an equivalent flexible mat mounted on a rigid foundation that is supported either by a Winkler soil type or a rigid soil. The equations of motion of the system were derived by taking into account the equilibrium of the coupled foundation-mat system where the structure was idealized as a single-degree-of-freedom. The obtained nonlinear coupled system of ordinary differential equations was integrated by using an adequate numerical scheme. A parametric study was performed then in order to evaluate the maximum response of the system as function of the intensity of the earthquake, the slenderness of the structure, the ratio of the mass of the foundation to the mass of the structure. Three cases were considered: (i) local uplift of foundation under large rotation with the p-delta effect, (ii) local uplift of foundation under large rotation without including the p-delta effect, (iii) local uplift of foundation under small rotation. It was found that, in the considered ranges of parameters and for moderate earthquakes, assuming small rotation of foundation under seismic loading can yield more adverse structural response, while the p-delta effect has almost no effect.

Effect of soil-structure interaction for a building isolated with FPS

  • Krishnamoorthy, A.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.285-297
    • /
    • 2013
  • The effect of soil structure interaction (SSI) on seismic response of a multi-degree-of-freedom structure isolated with a friction pendulum system (FPS) is studied. In the analysis, the soil is considered as an elastic continuum and is modeled using the finite element method. The effect of SSI on response of the structure is evaluated for twenty far-field and twenty near-fault earthquake ground motions. The effect of friction coefficient of sliding material of FPS on SSI is also studied. The results of the study show that the seismic response of the structure increases for majority of the earthquake ground motions due to SSI. The sliding displacement and base shear are underestimated if SSI effects are ignored in the seismic analysis of structures isolated with FPS.

Elastic Horizontal Response of a Structure to Bedrock Earthquake Considering the Nonlinearity of the Soil Layer (지반의 비선형성을 고려한 암반지진에 의한 구조물의 수평방향 탄성거동)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.53-62
    • /
    • 2002
  • Site soil condition affects significantly on the seismic response of a structure and is a critical factor for the performance based seismic design of a structure. In this paper, the effects of nonlinear soil properties on the elastic response spectra of a structure including the nonlinearity of a soil due to the earthquake excitation is investigated using one step finite element approach for the entire soil structure system and approximate linear iterative procedure to simulate the nonlinear soil behavior with the Ramberg-Osgood soil model. Studies were carried out for a linear SDOF system of a variable period with and without a pile group for the 1940 CI Centro earthquake recorded on ground rather than rock. The study results showed clearly that the effect of the nonlinear behavior of soft soil is very important on the elastic seismic response of a structure suggesting the necessity of the performance based seismic design.

Seismic Response Analysis of Soil-Pile-Structure Interaction System considering the Underground Cavity (지중공동을 고려한 지반-말뚝-구조물 상호작용계의 지진응답해석)

  • 김민규;임윤묵;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.117-124
    • /
    • 2002
  • The major purpose of this study is to determine the dynamic behavior of soil-pile-structure interaction system considering the underground cavity. For the analysis, a numerical method fur ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. For the verification of dynamic analysis in the frequency domain, both forced vibration analysis and free-field response analysis are performed. The behavior of soil non-linearity is considered using the equivalent linear approximation method. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis considering the underground cavity in 2D problem.

  • PDF

Seismic Analyses of Soil Pressure against Embedded Mat Foundation and Pile Displacements for a Building in Moderate Seismic Area (중진지역 건축물의 묻힌온통기초에 작용하는 토압과 말 뚝변위에 대한 지진해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Seismic analyses of a pile under a large rigid basement foundation embedded in the homogeneous soil layer were performed practically by a response displacement method assuming a sinusoidal wave form. However, it is hard to take into account the characteristics of a large mat foundation and a heterogeneous soil layer with the response displacement method. The response displacement method is relevant to the 2D problems for longitudinal structures such as tunnel, underground cave structure, etc., but might not be relevant with isolated foundations for building structures. In this study, seismic pile analysis by a pseudo 3D finite element method was carried out to compare numerical results with results of the response displacement method considering 3D characteristics of a foundation-soil system which is important for the building foundation analyses. Study results show that seismic analyses results of a response displacement method are similar to those of a pseudo 3D numerical method for stiff and dense soil layers, but they are too conservative for a soft soil layer inducing large soil pressures on the foundation wall and large pile displacements due to ignored foundation rigidity and resistance.

Wavelet analysis of soil-structure interaction effects on seismic responses of base-isolated nuclear power plants

  • Ali, Shafayat Bin;Kim, Dookie
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.561-572
    • /
    • 2017
  • Seismic base isolation has been accepted as one of the most popular design procedures to protect important structures against earthquakes. However, due to lack of information and experimental data the application of base isolation is quite limited to nuclear power plant (NPP) industry. Moreover, the effects of inelastic behavior of soil beneath base-isolated NPP have raised questions to the effectiveness of isolation device. This study applies the wavelet analysis to investigate the effects of soil-structure interaction (SSI) on the seismic response of a base-isolated NPP structure. To evaluate the SSI effects, the NPP structure is modelled as a lumped mass stick model and combined with a soil model using the concept of cone models. The lead rubber bearing (LRB) base isolator is used to adopt the base isolation system. The shear wave velocity of soil is varied to reflect the real rock site conditions of structure. The comparison between seismic performance of isolated structure and non-isolated structure has drawn. The results show that the wavelet analysis proves to be an efficient tool to evaluate the SSI effects on the seismic response of base-isolated structure and the seismic performance of base-isolated NPP is not sensitive to the effects in this case.

Seismic Analysis of Underground RC Structures considering Interface between Structure and Soil (경계면 요소를 고려한 지하 철근콘크리트 구조물의 지진해석)

  • 남상혁;변근주;송하원;박성민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.87-92
    • /
    • 2000
  • The real situation of an underground reinforced concrete(RC) structure with the surrounding soil medium subjected to seismic load is quite difficult to be simulated through an expensive work and, even if it is possible to arrange such an experiment, it will be too expensive. So development of analytical method can be applied usefully to seismic design and seismic retrofit through an analysis of seismic behavior and seismic performance evaluation. A path-dependent constitutive model for soil that can estimate the response of soil layer is indispensible for dealing with kinematic interaction of RC/soil entire system under seismic loads. And interface model which deals with the dynamic interaction of RC/soil entire system is also necessary. In this study, finite element analysis program that can consider path-dependent behavior of RC and soil, and interfacial behavior between RC and soil is developed for rational seismic analysis of RC/soil entire system. Using this program, nonlinear behavior of interface between RC and soil is analyzed, and the effect of interfacial behavior to entire system is investigated.

  • PDF

Seismic pounding between adjacent buildings considering soil-structure interaction

  • Raheem, Shehata E Abdel;Alazrak, Tarek M.A.;AbdelShafy, Aly G.A.;Ahmed, Mohamed M.;Gamal, Yasser A.S.
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.55-70
    • /
    • 2021
  • In urban cities, buildings were built in the neighborhood, these buildings influence each other through structure-soilstructure interaction (SSSI) and seismic pounding due to limited separation distance in-between. Generally, the effects of the interaction between soil and structure are disregarded during seismic design and analysis of superstructure. However, the system of soil-base adversely changes structural behavior and response demands. Thus, the vibration characteristics plus the seismic response of a building are not able to be independent of those in adjacent buildings. The interaction between structure, soil, and structure investigates the action of the attendance of adjacent buildings to the others by the interaction effect of the sub-soil under dynamic disturbances. The main purpose of this research is to analyze the effects of SSSI and seismic pounding on the behavior of adjacent buildings. The response of a single structure or two adjacent structures with shallow raft base lying on soft soil are studied. Three dimensions finite element models are developed to investigate the effects of pounding; gap distance; conditions of soil; stories number; a mass of adjacent building and ground excitation frequency on the seismic responses and vibration characteristics of the structures. The variation in the story displacement, story shear, and story moment responses demands are studied to evaluate the presence effect of the adjacent buildings. Numerical results acquired using conditions of soil models are compared with the condition of fixed support and adjacent building models to a single building model. The peak responses of story displacement, story moment, and story shear are studied.