• Title/Summary/Keyword: Seismic reinforced

Search Result 1,512, Processing Time 0.026 seconds

Confinement effect on the behavior factor of dual reinforced concrete moment-resisting systems with shear walls

  • Alireza Habibi;Mehdi Izadpanah;Yaser Rahmani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.781-791
    • /
    • 2023
  • Lateral pressure plays a significant role in the stress-strain relationship of compressed concrete. Concrete's internal cracking resistance, ultimate strain, and axial strength are improved by confinement. This phenomenon influences the nonlinear behavior of reinforced concrete columns. Utilizing behavior factors to predict the nonlinear seismic responses of structures is prevalent in seismic codes, and this factor plays a vital role in the seismic responses of structures. This study aims to evaluate the confining action on the behavior factor of reinforced concrete moment resisting frames (RCMRFs) with shear walls (SWRCMRFs). To this end, a diverse range of mid-rise SW-RCMRFs was initially designed based on the Iranian national building code criteria. Second, the stress-strain curve of each element was modeled twice, both with and without the confinement phenomenon. Each frame was then subjected to pushover analysis. Finally, the analytical behavior factors of these frames were computed and compared to the Iranian seismic code behavior factor. The results demonstrate that confining action increased the behavior factors of SW-RCMRFs by 7-12%.

Seismic performance assessment of deteriorated reinforced concrete columns using a new plastic-hinge element

  • Tae-Hoon Kim;Hosung Jung
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.139-148
    • /
    • 2023
  • The purpose of this paper is to numerically assess the seismic performance of deteriorated reinforced concrete columns using a new plastic-hinge element. Developing a three dimensional (3D) nonlinear model can be difficult and computationally complex, and there can be problems applying it in the field. Thus, to solve these problems, a plastic-hinge element that could considers the shear deformation of deteriorated reinforced concrete columns was proposed. The developed element was based on the Timoshenko beam model and used two nodes with six degrees of freedom and a zero-length element. Moreover, the developed model could consider the combined effects of corrosion, as demonstrated by the reduced reinforcement area and the loss of bond. Consequently, the numerical procedures developed for evaluating the seismic performance of deteriorated columns were validated by comparing the verification results.

Seismic Performance Assessment of Hollow Circular Reinforced Concrete Bridge Columns with Confinement Steel (중공원형 철근콘크리트 교각의 횡방향철근에 따른 내진성능평가)

  • Kim, Tae-Hoon;Kang, Hyeong-Taek
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.13-25
    • /
    • 2012
  • The purpose of this study was to investigate the seismic behavior of hollow circular reinforced concrete bridge columns with confinement steel, and to develop improved seismic design criteria. Three hollow circular columns were tested under a constant axial load and a quasi-static, cyclically reversed horizontal load. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. The numerical method used gives a realistic prediction of the seismic performance throughout the loading cycles for the several test specimens investigated. Based on the experimental and analytical results, design recommendations are presented to improve current practice in the design and construction of hollow circular reinforced concrete bridge columns.

Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites

  • Hou, Dongxu;Wu, Zhimin;Zheng, Jianjun;Cui, Yao
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.1-20
    • /
    • 2015
  • Many existing reinforced concrete (RC) columns in structures tend to become substandard RC ones due to updated standards or environmental changes. These substandard columns may alter the behaviors of the whole structure and therefore are in urgent need of seismic retrofitting. Owing to their superior advantages, carbon fiber reinforced polymer (CFRP) composites are widely used to retrofit RC columns. The applications mainly focus on various substandard RC columns, but few deals with substandard columns with deteriorated concrete, especially damaged by earthquake. The purpose of this paper is to investigate the seismic behaviors of CFRP reinforced partially deteriorated RC columns and to evaluate the effect of CFRP sheets on them. Six flexure-dominant columns were tested under a constant axial load and transverse cyclic displacements. It is found that the seismic behaviors of partially deteriorated columns can be recovered by wrapping CFRP sheets on them. Numerical analysis is then conducted using finite element methods and verified with experimental results. The effects of the axial load ratio, the ratio of the thickness of CFRP sheet to the column diameter, and the slenderness ratio on the seismic behaviors of CFRP reinforced RC columns are evaluated. Finally, a method is proposed to determine the required thickness of CFRP sheet.

Seismic risk priority classification of reinforced concrete buildings based on a predictive model

  • Isil Sanri Karapinar;Ayse E. Ozsoy Ozbay;Emin Ciftci
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.279-289
    • /
    • 2024
  • The purpose of this study is to represent a useful alternative for the preliminary seismic vulnerability assessment of existing reinforced concrete buildings by introducing a statistical approach employing the binary logistic regression technique. Two different predictive statistical models, namely full and reduced models, were generated utilizing building characteristics obtained from the damage database compiled after 1999 Düzce earthquake. Among the inspected building parameters, number of stories, overhang ratio, priority index, soft story index, normalized redundancy ratio and normalized lateral stiffness index were specifically selected as the predictor variables for vulnerability classification. As a result, normalized redundancy ratio and soft story index were identified as the most significant predictors affecting seismic vulnerability in terms of life safety performance level. In conclusion, it is revealed that both models are capable of classifying the set of buildings being severely damaged or collapsed with a balanced accuracy of 73%, hence, both are able to filter out high-priority buildings for life safety performance assessment. Thus, in this study, having the same high accuracy as the full model, the reduced model using fewer predictors is proposed as a simple and viable classifier for determining life safety levels of reinforced concrete buildings in the preliminary seismic risk assessment.

Seismic Performance Assessment of RC Bridge Columns using Inelastic Finite Element Analysis (비탄성 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Chung, Young-Soo;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.63-74
    • /
    • 2005
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridge columns using inelastic finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage index aims to provide a means of quantifying numerically the damage in reinforced concrete bridge columns sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Damage characterization of beam-column joints reinforced with GFRP under reversed cyclic loading

  • Said, A.M.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.443-455
    • /
    • 2009
  • The use of fiber reinforced polymer (FRP) reinforcement in concrete structures has been on the rise due to its advantages over conventional steel reinforcement such as corrosion. Reinforcing steel corrosion has been the primary cause of deterioration of reinforced concrete (RC) structures, resulting in tremendous annual repair costs. One application of FRP reinforcement to be further explored is its use in RC frames. Nonetheless, due to FRP's inherently elastic behavior, FRP-reinforced (FRP-RC) members exhibit low ductility and energy dissipation as well as different damage mechanisms. Furthermore, current design standards for FRP-RC structures do not address seismic design in which the beam-column joint is a key issue. During an earthquake, the safety of beam-column joints is essential to the whole structure integrity. Thus, research is needed to gain better understanding of the behavior of FRP-RC structures and their damage mechanisms under seismic loading. In this study, two full-scale beam-column joint specimens reinforced with steel and GFRP configurations were tested under quasi-static loading. The control steel-reinforced specimen was detailed according to current design code provisions. The GFRP-RC specimen was detailed in a similar scheme. The damage in the two specimens is characterized to compare their performance under simulated seismic loading.

Prediction of shear strength and drift capacity of corroded reinforced concrete structural shear walls

  • Yang, Zhihong;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.245-257
    • /
    • 2022
  • As the main lateral load resisting system in high-rise reinforced concrete structures, the mechanical performance of shear wall has a significant impact on the structure, especially for high-rise buildings. Steel corrosion has been recognized as an important factor affecting the mechanical performance and durability of the reinforced concrete structures. To investigate the effect on the seismic behaviour of corroded reinforced concrete shear wall induced by corrosion, analytical investigations and simulations were done to observe the effect of corrosion on the ultimate seismic capacity and drift capacity of shear walls. To ensure the accuracy of the simulation software, several validations were made using both non-corroded and corroded reinforced concrete shear walls based on some test results in previous literature. Thereafter, a parametric study, including 200 FE models, was done to study the influence of some critical parameters on corroded structural shear walls with boundary element. These parameters include corrosion levels, axial force ratio, aspect ratio, and concrete compressive strength. The results obtained would then be used to propose equations to predict the seismic resistance and drift capacity of shear walls with various corrosion levels.

Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: II. Performance Assessment (원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : II. 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kang, Hyeong-Taek;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.351-361
    • /
    • 2006
  • In this study, nonlinear finite element analysis procedures are presented for the seismic performance assessment of circular reinforced concrete bridge piers with confinement steel. This paper defines a damage index based on the predicted hysteretic behavior of a circular reinforced concrete bridge pier. Damage indices aim to provide a means of quantifying numerically the damage in circular reinforced concrete bridge piers sustained under earthquake loading. The proposed numerical method is applied to circular reinforced concrete bridge piers with confinement steel tested by the authors. The proposed numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several test specimens investigated.

The Experimental Study on Seismic Performance of RC Bridge Columns with Longitudinal Steel Lap Splice (겹침이음 상세에 따른 철근콘크리트 교각의 내진성능에 관한 실험적 연구)

  • 석상근;손혁수;정철호;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.553-558
    • /
    • 2001
  • Recent destructive seismic events demonstrated the importance of mitigating human casualties and serious property damages in design and construction of structures. The Korean Bridge Design Specifications (1992) adopted seismic design requirements based on the AASHTO specification, and minor modification was made in 2000. The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable. The longitudinal reinforcement details affect seismic performance such as flexural failure and shear failure. This research aims to develop longitudinal steel connection details with confinement steel by experimental study for seismic performance of reinforced concrete bridge columns. Quasi-static test under three different axial load levels was conducted for 12 spiral column specimens. All the column specimens had the same aspect ratio of 3.5. The column specimens were transversely reinforced with spiral and with five different longitudinal steel connection. The final objective of this study is to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and improve construction quality.

  • PDF