• Title/Summary/Keyword: Seismic rebar

Search Result 52, Processing Time 0.025 seconds

Performance Based Seismic Design of Apartment Houses by Applying Seismic Rebar (공동주택의 성능기반설계 시 내진철근의 영향평가)

  • Jo, Min-Joo;Yu, Seong-Yong;Kang, Ji-Yeon;Kim, Hyung-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.115-122
    • /
    • 2017
  • In this study, performance based seismic design was performed on the shear wall structural system and the beam-column system as a variable general rebar and seismic rebar, and comparing the capacity of the two models of each system. From nonlinear analyses, the capacity of the shear wall structural system applying seismic rebar has shown a stable behavior after the maximum strength, but there is little difference. Furthermore, both models showed similar capacity between story drift and story shear force and capacity of members. These results are attributed to the fact that the seismic rebar, which is highly ductile under the seismic load applied to the target structure, does not render sufficient capacity.

Seismic behavior of rebar-penetrated joint between GCFST column and RGC beam

  • Li, Guochang;Fang, Chen;An, Yuwei;Zhao, Xing
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.547-567
    • /
    • 2015
  • The paper makes the experimental and finite-element-analysis investigation on the seismic behavior of the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam under low cyclic reversed loading. Two specimens are designed and conducted for the experiment to study the seismic behavior of the rebar-penetrated joint under cyclic loading. Then, finite element analysis models of the rebar-penetrated joint are developed using ABAQUS 6.10 to serve as the complement of the experiment and further analyze the seismic behavior of the rebar-penetrated joint. Finite element analysis models are also verified by the experimental results. Finally, the hysteretic performance, the bearing capacity, the strength degradation, the rigidity degradation, the ductility and the energy dissipation of the rebar-penetrated joint are evaluated in detail to investigate the seismic behavior of the rebar-penetrated joint through experimental results and finite element analysis results. The research demonstrates that the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam, with full and spindle-shaped load-displacement hysteretic curves, shows generally the high ductility and the outstanding energy-dissipation capacity. As a result, the rebar-penetrated joint exhibits the excellent seismic performance and meets the earthquake-resistant requirements of the codes in China. The research provides some references and suggestions for the application of the rebar-penetrated joint in the projects.

Seismic-performance Flexural Experiments for Real Scale Piers with Circular Cross-section Considering Aging Effects (노후도를 고려한 실크기 원형단면 교각의 내진성능 휨실험)

  • Lee, Seung-Geon;Lee, Soo-Hyung;Lee, Hyerin;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.131-142
    • /
    • 2021
  • For old piers constructed when seismic design code had not been developed, lap splices usually exist in plastic hinge region. Corrosion of rebars causes decreasement in cross-sectional area of rebar and deterioration of lap-splice behaviour, thereby reducing the seismic performance of the old piers. In this research, according to these characteristics of old piers, test specimens are designed and manufactured considering rebar corrosion, lap splice, seismic design details, and seismic reinforcement. These effects are investigated through experiments. As a result of these experiment, rebar corrosion as well as lap splice reduces displacement ductility. When seismic design details or steel-plate reinforcement are applied, sufficient displacement ductility is expressed. For non-seismically designed specimens, loosening of the lap splice of transverse rebars caused buckling of longitudinal rebars and crushing of core concrete in plastic hinge region . For seismically designed specimen, area-reducing and untying of transverse rebars due to corrosion of rebars caused buckling of longitudinal rebars and crushing of core concrete.

Earthquake effect on the concrete walls with shape memory alloy reinforcement

  • Beiraghi, Hamid
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.491-506
    • /
    • 2019
  • Literature regarding concrete walls reinforced by super elastic shape memory alloy (SMA) bars is rather limited. The seismic behavior of a system concurrently including a distinct steel reinforced concrete (RC) wall, as well as another wall reinforced by super elastic SMA at the first story, and steel rebar at upper stories, would be an interesting matter. In this paper, the seismic response of such a COMBINED system is compared to a conventional system with steel RC concrete walls (STEEL-Rein.) and also to a wall system with SMA rebar at the first story and steel rebar at other stories ( SMA-Rein.). Nonlinear time history analysis at maximum considered earthquake (MCE) and design bases earthquake (DBE) levels is conducted and the main responses like maximum inter-story drift ratio and residual inter-story drift ratio are investigated. Furthermore, incremental dynamic analysis is used to accomplish probabilistic seismic studies by creating fragility curves. Results demonstrated that the SMA-Rein. system, subjected to DBE and MCE ground motions, has almost zero and 0.27% residual maximum inter-story drifts, while the values for the COMBINED system are 0.25% and 0.51%. Furthermore, fragility curves show that using SMA rebar at the base of all walls causes a larger probability of exceedance 3% inter-story drift limit state compared to the COMBINED system. Static push over analysis demonstrated that the strength of the COMBINED model is almost 0.35% larger than that of the two other models, and its general post-yielding stiffness is also approximately twice the corresponding stiffness of the two other models.

Constructability and Economic Evaluation of Continuous Hoop Reinforcement Method

  • Kang, Su-Min;Park, Sung-Woo;Jang, Se-Woong;Jin, Jong-Min;Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.291-305
    • /
    • 2013
  • This paper presents the continuous hoop reinforcement method as a means to overcome the difficulty of rebar construction due to the seismic detail of lateral reinforcement. Because the continuous hoop has no seismic hook, and there is less interference during the rebar work, rebar quantities and construction time can be reduced. Since the details of column and beam continuous hoops are different from those of conventional lateral reinforcements, the construction method should be developed through mock-up tests. The length of the beam mock-up is 8m and the section size is $500mm{\times}700mm$, the height of the column mock-up is 2.8m and 4m, and the section size is $800{\times}800mm$. The length and the size are determined based on the elements that are generally used in reinforced concrete basement parking lots and office buildings. The results of the mock-up test showed that the quantities of rebar could be reduced by 20% and the time could be reduced by up to 40% compared with conventional lateral reinforcements.

Less amout of lap-spliced longitudinal bars as an alternative of seismic detailing for limited ductility design (한정연성도 설계를 위한 소수 겹침이음을 갖는 주철근 상세에 관한 연구)

  • 김익현;이종석;김원섭;선창호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.255-262
    • /
    • 2003
  • In present Korea Highway Bridge Standards the lap splice of longitudinal bars in a potential plastic hinge region is allowed so that large amount of transverse rebar specified in high seismicity regions Is required to prevent brittle bond failure If the brittle failure effects can be completely removed from the conventional designed piers, the amount of transverse rebar will be reduced drastically. In this study scaled models with solid and hollow rectangular sections were tested to investigate the seismic behavior of RC piers with 50% of lap-spliced longitudinal bars in plastic hinge regions. In the tests the typical flexural failure conducting a ductile behavior were observed in both models. It is shown that the 50% of lap-spliced bars can be considered as a good alternative of seismic detailing for longitudinal bars.

  • PDF

An Empirical Study for Cost Saving Effect Analysis When Using Seismic Reinforcing Bar (내진 보강용 철근 사용 시 비용 절감 효과 분석을 위한 실증적 연구)

  • Lee, Jong-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.120-127
    • /
    • 2016
  • Due to the enlargement and high-rise of reinforced concrete structure, the application of high functional material is required. However, high-strength bar is recently introduced to the country and the material is insufficient to measure the variation of quantity of rebar quantitatively when using high-strength bar. For these reasons, this study is to provide useful data in cost decision making when applying high-strength bar at a stage of architectural project planning. For residence-commerce complex buildings, we set up six types of conditions such as in case of using only rebar, in case of using only high-strength bar, in case of using rebar mixed with high-strength bar and so on. With the standard of study model 1 that applies only SD400 regardless of rebar diameter, the analyzed result of rebar variation and the cost change of construction in other study model is as follows. When the rebar amount and cost in study model I was 100%, each ratio was 88.3% and 90.5% in study model II, 80.2% and 83.4% in study model III, 91.9% and 93.5% in study model IV, 88.9% and 87.7% in study model V and 82.4% and 85.5% in study model VI. Therefore, in case of rebar amount and construction cost, study model III was evaluated as the best that was applied only SD600.

Detection of the Cavity Behind the Tunnel Lining by Single Channel Seismic and GPR Method (GPR 및 단일채널 탄성파탐사에 의한 터널라이닝 배면공동 조사)

  • Shin, Sung-Ryul;Jo, Chul-Hyun;Shin, Chang-Soo;Yang, Seung-Jin;Jang, Won-Yil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.148-158
    • /
    • 1998
  • Determining the thickness if concrete lining and detecting of the cavity where is located behind tunnel lining plays an important role in the safety diagnosis of tunnel structure and the quality control. In this study, we made use of GPR and seismic method in order to find the cavity or flaw. Although GPR is very useful method in the concrete lining without rebar, it is difficult to detect the cavity in the reinforced concrete lining. We applied mini-seismic method to the reinforced concrete lining. The obtained seismic data was processed by means of seismic section in time domain and image section of power spectrum in frequency domain using Impact-Echo method as well. The proposed method can accurately show the location and depth of the cavity in the reinforced concrete lining.

  • PDF

Seismic Performance Assessment of Roof-Level Joints with Steel Fiber-Reinforced High-Strength Concrete (강섬유보강 고강도콘크리트를 적용한 최상층 접합부의 내진성능 평가)

  • Kim, Sang-Hee;Kwon, Byung-Un;Kang, Thomas H.-K.
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • This study was conducted to verify seismic performance of special moment frame's joints at roof-level with high-strength concrete and SD600 bars. K-RC-H was designed according to the seismic code and K-HPFRC-H had 150% of the original hoop spacing and 1.0% steel fiber volume fraction compared with K-RC-H. Both specimens had remarkable seismic performance without noticeable decrease in moment, but with very good energy dissipation before rebar failure. The U-bars in the joint sufficiently constrained rebar's action that pushed the cover upward. SD600 bars with $1.25l_{dt}$ had minimum slip in the joint. It was considered that the steel fiber contributed to improvement of the bending moment and joint shear distortion, and the result showed that it would be possible to increase the hoop spacing to 150% of the regular spacing.

A Study on the Bending and Seismic Performance of High Performance Cold Forming Composite Beam

  • Choi, Young Han;Kim, Sung Bae;Hong, Hyung Ju;Kim, Sang Seup
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1772-1783
    • /
    • 2018
  • Nowadays, the researches about composite structure system are being implemented in various fields, and many steel structures are designed based on that. In this study, the bending and seismic performance of the newly developed high-performance cold forming composite beam are evaluated by several experiments. As a result of the bending performance test, the bending moment of beam was increased stably depending on the depth and plate thickness of beam, and it is considered that the bending moment can be evaluated by the equation of a composite beam design. As a result of the seismic performance test, it was verified that sufficient seismic performance was obtained despite the increase of a negative moment rebar and depth of beam. In addition, the nominal bending moment has obtained the strength above the plastic bending moment, and also the plastic rotation angle has satisfied the requirement of composite intermediate moment frame.