• Title/Summary/Keyword: Seismic occurrence

Search Result 149, Processing Time 0.031 seconds

A Basic Study on The Seismic Capacity Evaluation and Repair Reinforcement in Cultural Assets : Focused on Wooden Structure Cultural Assets in Korea and Japan (문화재 내진진단과 보수·보강에 관한 기초적인 연구 -한국과 일본의 목조 건조물 문화재를 중심으로-)

  • Hong, Ji-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.488-495
    • /
    • 2016
  • The purpose of this study is to improve the repair and reinforcement of cultural construction assets made of wood and develop seismic countermeasures. The existing regulations for the earthquake proofing of cultural assets are termed 'Regulations concerning earthquake disasters affecting cultural assets' of the cultural heritage administration, which only specifies the reporting of damage to cultural assets after the occurrence of an earthquake. Since 2013, Korea has been studying the introduction of a seismic evaluation system consisting of experts by referring to the 'Guideline for the diagnosis and reinforcement of important cultural properties in Japan. The earthquake proofing of wooden cultural assets in Japan is assessed by experts using a scoring system similar to the one in Korea, but the system in Japan is managed in three steps, viz. before, during and after the occurrence of the earthquake. In order to extend the existing management system by focusing on the repair of the damage after the occurrence of an earthquake, it is necessary for Korea to cultivate experts for the regular management of cultural assets, establish seismic criteria for them, and introduce a regular management system through a civil organization related to construction. By examining the current status of wooden cultural assets, it is necessary to develop various seismic diagnosis techniques and produce guidelines for the repair and reinforcement of individual wooden cultural construction assets following their identification.

Evaluation of Agricultural Reservoir Behavior by Seismic Shaking Table Test (지진 모형시험을 통한 농업용 저수지 거동 평가)

  • Lim, Seongyoon;Song, Changseob;Kim, Myeonghwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.55-63
    • /
    • 2015
  • Embankment of agricultural reservoir started by four major rivers project. Most agricultural reservoirs must insure the agricultural water, they need must be ensured stability of embankment. Recently, there is a growing interest in seismic stability of structure by earthquake. Results of evaluation of the structural stability through seismic vibration test and numerical analysis, maximum displacement and the maximum acceleration is a similar trends. Appeared by increasing occurrence of the value of the displacement and acceleration of the structure with the result long period wave type in accordance with the seismic wave in the case of seismic waves, which shows the results of similar tendency as long period wave type consists of waveform seismic acceleration. Model test and numerical analysis results with in order to increase embankment agricultural reservoir, the displacement was found to ensure it is displayed within one percentage structural stability of the embankment.

SUPPRESSION OF SWELL EFFECT IN HIGH-RESOLUTION MARINE SEISMIC DATA USING CROSS-CORRELATION SCHEME (상호상관기법을 이용한 고분해능 천부해저탄성파탐사 자료에서의 너울효과 제거)

  • Kim,Jong-Cheon;Lee,Ho-Yeong;Kim,Ji-Su;Gang,Dong-Hyo
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • Multi-channel seismic survey, which has been mainly employed in oil prospecting, is carried out as a high resolution shallow marine seismic exploration. Fault drop as small as 1 m can be resolved by employing high-resolution seismic survey. Similar to the effect of shallow inhomogenities in the land seismic data, due to occurrence of swell quite often higher than 1 m, shallow marine seismic data tend to be severely degraded. Suppression of such a swell effect is critical in processing of steps of marine seismic shallow high-resolution data. Compared to the moving average depth method, a newly developed method using cross-correlation technique is found out to be very effective in increasing the resolution of the shallow reflection events by accuratly elucidating the depth of sea bottom.

  • PDF

Seismic fragility analysis of wood frame building in hilly region

  • Ghosh, Swarup;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.97-107
    • /
    • 2021
  • A comprehensive study on seismic performance of wood frame building in hilly regions is presented. Specifically, seismic fragility assessment of a typical wood frame building at various locations of the northeast region of India are demonstrated. A three-dimensional simplified model of the wood frame building is developed with due consideration to nonlinear behaviour of shear walls under lateral loads. In doing so, a trilinear model having improved capability to capture the force-deformation behaviour of shear walls including the strength degradation at higher deformations is proposed. The improved capability of the proposed model to capture the force-deformation behaviour of shear wall is validated by comparing with the existing experimental results. The structural demand values are obtained from nonlinear time history analysis (NLTHA) of the three-dimensional wood frame model considering the effect of uncertainty due to record to record variation of ground motions and structural parameters as well. The ground motion bins necessary for NLTHA are prepared based on the identified hazard level from probabilistic seismic hazard analysis of the considered locations. The maximum likelihood estimates of the lognormal fragility parameters are obtained from the observed failure cases and the seismic fragilities corresponding to different locations are estimated accordingly. The results of the numerical study show that the wood frame constructions commonly found in the region are likely to suffer minor cracking or damage in the shear walls under the earthquake occurrence corresponding to the estimated seismic hazard level; however, poses negligible risk against complete collapse of such structures.

Seismic Damage Analysis Of Concrete Gravity Dam Using ABAQUS (ABAQUS 소프트웨어를 이용한 콘크리트 중력댐의 지진손상해석)

  • Shin, Dong-Hoon;Nghia, Nguyen Trong;Park, Han-Gyu;Park, Kyung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.530-533
    • /
    • 2009
  • This study deals with 2D and 3D nonlinear seismic damage analysis of a concrete gravity dam using the finite element program ABAQUS and the concrete damaged plasticity model. 2D and 3D spillway sections of the dam are simulated. First the frequency analysis is conducted to compare the fundamental frequency and estimate the value of damping coefficient. Then the seismic analysis is conducted using the simulated ground acceleration motion. The relative displacement between the crest and bottom of the dam is obtained and compared for the maximum value and occurrence time. The results indicate that the plane-stress assumption gives similar results of maximum relative displacement and final damage distribution with 3D analysis.

  • PDF

Impact spectrum of flood hazard on seismic vulnerability of bridges

  • Yilmaz, Taner;Banerjee, Swagata
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.515-529
    • /
    • 2018
  • Multiple hazards (multihazard) conditions may cause significant risk to structures that are originally designed for individual hazard scenarios. Such a multihazard condition arises when an earthquake strikes to a bridge pre-exposed to scour at foundations due to flood events. This study estimates the impact spectrum of flood-induced scour on seismic vulnerability of bridges. Characteristic river-crossing highway bridges are formed based on the information obtained from bridge inventories. These bridges are analyzed under earthquake-only and the abovementioned multihazard conditions, and bridge fragility curves are developed at component and system levels. Research outcome shows that bridges having pile shafts as foundation elements are protected from any additional seismic vulnerability due to the presence of scour. However, occurrence of floods can increase seismic fragility of bridges at lower damage states due to the adverse impact of scour on bridge components at superstructure level. These findings facilitate bridge design under the stated multihazard condition.

Effects of Bearing Damage on Bridge Seismic Responses (교량시스템의 지진응답특성에 미치는 받침손상의 영향)

  • 김상효;마호성;이상우;조병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.287-294
    • /
    • 2001
  • Dynamic responses of multi-span simply supported bridges are investigated to examine the effect of damaged bearings under seismic excitations. The damaged bearings are modeled as sliding elements with friction between the super-structure and the pier top. Various values of the friction coefficients for damaged bearings are examined with increasing magnitudes of peak ground accelerations. It is found that the g1oba1 seismic behaviors are significantly influenced by the occurrence of bearing damage. It should be noticed that the most possible location of unseating failure of superstructures differs with that in the model without consideration of the bearing damage. It can be concluded that the bearing damage may play the major role in the unseating failure of a bridge system, so that the damage of bearings should be included to achieve more rational seismic safety evaluation.

  • PDF

Seismic Characteristics Evaluation According to Construction and Configuration Types of Fortress Structure (성곽구조물의 축조 및 구성형식에 따른 내진특성평가)

  • Kim, Ho-Soo;Yoo, Jun;Kim, So-Yeon;Kim, Jin-Wan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • In Korea, the occurrence frequency of earthquakes has recently increased, compared with the past. So, the various damages for cultural properties due to earthquake can be expected, and especially fortress structure is vulnerable to earthquake. Therefore, the resonable seismic characteristics evaluation is required to secure the safety for fortress structure with the various construction and configuration types. Also, we should consider the various applied load conditions as design variables. To this end, this study classifies fortress structures according to the construction and configuration types, and then applies the discrete element method to model and analyze fortress structures. Finally, the seismic characteristics is evaluated through slip condition due to the analysis results considering the various design variables.

Behavioral Performance Evaluation of the Moment-Resisting Frame Models Equipped with Seismic Damage Mitigation Systems (지진피해 저감 시스템을 설치한 모멘트 프레임의 거동성능 평가)

  • Joe, Yang Hee;Son, Hong Min;Hu, Jong Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.311-322
    • /
    • 2017
  • In this study, the seismic performance of concrete-steel composite moment frame structures equipped with seismic retrofitting systems such as seismic reinforcement, base isolators, and bracing members, which are typical earthquake damage mitigation systems, is evaluated through nonlinear dynamic analyses. A total of five frame models were designed and each frame model was developed for numerical analyses. A total of 80 ground acceleration data were used to perform the nonlinear dynamic analysis to measure ground shear force and roof displacement, and to evaluate the behavioral performance of each frame model by measuring inter-story drift ratios. The analysis results indicate that the retrofitting device of the base isolator make a significant contribution to generating relatively larger absolute displacement than other devices due to flexibility provided to interface between ground and column base. However, the occurrence of the inter-story drift ratio, which is a relative displacement that can detect the damage of the structure, is relatively small compared with other models. On the other hand, the seismic reinforced frame model enhanced with the steel plate at the lower part of the column was found to be the least efficient.

Seismic performance sensitivity to concrete strength variability: a case-study

  • Stefano, M. De;Tanganelli, M.;Viti, S.
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.321-337
    • /
    • 2015
  • Existing building structures can easily present material mechanical properties which can largely vary even within a single structure. The current European Technical Code, Eurocode 8, does not provide specific instructions to account for high variability in mechanical properties. As a consequence of the high strength variability, at the occurrence of seismic events, the structure may evidence unexpected phenomena, like torsional effects, with larger experienced deformations and, in turn, with reduced seismic performance. This work is focused on the reduction in seismic performance due to the concrete strength variability. The analysis has been performed on a case-study, i.e., a 3D RC framed 4 storey building. A Normal distribution, compatible to a large available database, has been taken to represent the concrete strength domain. Different plan layouts, representative of realistic strength distributions, have been considered, and a statistical analysis has been performed on the induced reduction in seismic performance. The obtained results have been compared to the standard analysis as provided by Eurocode 8 for existing buildings. The comparison has shown that the Eurocode 8 provisions are not conservative for existing buildings having a large variability in concrete strength.