• Title/Summary/Keyword: Seismic motion

Search Result 990, Processing Time 0.02 seconds

Vertical seismic response analysis of straight girder bridges considering effects of support structures

  • Wang, Tong;Li, Hongjing;Ge, Yaojun
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1481-1497
    • /
    • 2015
  • Vertical earthquake ground motion may magnify vertical dynamic responses of structures, and thus cause serious damage to bridges. As main support structures, piers and bearings play an important role in vertical seismic response analysis of girder bridges. In this study, the pier and bearing are simplified as a vertical series spring system without mass. Then, based on the assumption of small displacement, the equation of motion governing the simply-supported straight girder bridge under vertical ground motion is established including effects of vertical deformation of support structures. Considering boundary conditions, the differential quadrature method (DQM) is applied to discretize the above equation of motion into a MDOF (multi-degree-of-freedom) system. Then seismic responses of this MDOF system are calculated by a step-by-step integration method. Effects of support structures on vertical dynamic responses of girder bridges are studied under different vertical strong earthquake motions. Results indicate that support structures may remarkably increase or decrease vertical seismic responses of girder bridges. So it is of great importance to consider effects of support structures in structural seismic design of girder bridges in near-fault region. Finally, optimization of support structures to resist vertical strong earthquake motions is discussed.

Variability of Seismic Demand According In the Selection the Earthquake Ground Motion Groups (지진기록 선택에 따른 요구지진 하중의 변화)

  • 황수민;한상환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.417-422
    • /
    • 2004
  • It is the challenging task to predict seismic demand for structural design. In current seismic design provisions such as UBC, NEHRP, ATC 3-06, the seismic demand is calculated using the response spectrum with response modification factor (R). This paper investigates variability of seismic demand according to selecting the earthquake ground motion groups. Different Earthquake sets used by Miranda, Riddell and Seed selected were used in this study. Earthquake sets selected by authors include 62 sets of near field ground motion and 19 sets one pulse ground motion. Linear Elastic Response Spectrum (LERS), the variation of performance points of calculated by Capacity Spectrum Method (CSM) were considered with respect to the different sets of earthquake ground motions.

  • PDF

Numerical study on the effects of seismic torsional component on multistory buildings

  • Ouazir, Abderrahmane;Hadjadj, Asma;Benanane, Abdelkader
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • In this paper, the influence of the rotational component, about a vertical axis, of earthquake ground motion on the response of building structures subjected to seismic action is considered. The torsional component of ground motion is generated from the records of translational components. Torsional component of ground motion is then, together with translational components, applied in numerical linear dynamic analysis of different reinforced concrete framed structure of three stories buildings. In total, more than 40 numerical models were created and analyzed. The obtained results show clearly the dependence of the effects of the torsional seismic component on structural system and soil properties. Thus, the current approach in seismic codes of accounting for the effects of accidental torsion due to the torsional ground motion, by shifting the center of mass, should be reevaluated.

Seismic Fragility Assessment for Korean High-Rise Non-Seismic RC Shear Wall Apartment Buildings (국내 고층 비내진 철근콘크리트 벽식 아파트의 지진취약도 평가)

  • Jeon, Seong-Ha;Shin, Dong-Hyun;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.293-303
    • /
    • 2020
  • Seismic fragility was assessed for non-seismic reinforced concrete shear walls in Korean high-rise apartment buildings in order to implement an earthquake damage prediction system. Seismic hazard was defined with an earthquake scenario, in which ground motion intensity was varied with respect to prescribed seismic center distances given an earthquake magnitude. Ground motion response spectra were computed using Korean ground motion attenuation equations to match accelerograms. Seismic fragility functions were developed using nonlinear static and dynamic analysis for comparison. Differences in seismic fragility between damage state criteria including inter-story drifts and the performance of individual structural members were investigated. The analyzed building had an exceptionally long period for the fundamental mode in the longitudinal direction and corresponding contribution of higher modes because of a prominently insufficient wall quantity in such direction. The results showed that nonlinear static analyses based on a single mode tend to underestimate structural damage. Moreover, detailed assessments of structural members are recommended for seismic fragility assessment of a relatively low performance level such as collapse prevention. On the other hand, inter-story drift is a more appropriate criterion for a relatively high performance level such as immediate occupancy.

The effect of local topography on the seismic response of a coupled train-bridge system

  • Qiao, Hong;Du, Xianting;Xia, He;De Roeck, Guido;Lombaert, Geert;Long, Peiheng
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.177-191
    • /
    • 2019
  • The local topography has a significant effect on the characteristics of seismic ground motion. This paper investigates the influence of topographic effects on the seismic response of a train-bridge system. A 3-D finite element model with local absorbing boundary conditions is established for the local site. The time histories of seismic ground motion are converted into equivalent loads on the artificial boundary, to obtain the seismic input at the bridge supports. The analysis of the train-bridge system subjected to multi-support seismic excitations is performed, by applying the displacement time histories of the seismic ground motion to the bridge supports. In a case study considering a bridge with a span of 466 m crossing a valley, the seismic response of the train-bridge system is analyzed. The results show that the local topography and the incident angle of seismic waves have a significant effect on the seismic response of the train-bridge system. Leaving these effects out of consideration may lead to unsafe analysis results.

Ground motion selection and scaling for seismic design of RC frames against collapse

  • Bayati, Zeinab;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.445-459
    • /
    • 2016
  • Quantitative estimation of seismic response of various structural systems at the collapse limit state is one of the most significant objectives in Performance-Based Earthquake Engineering (PBEE). Assessing the effects of uncertainties, due to variability in ground motion characteristics and random nature of earthquakes, on nonlinear structural response is a pivotal issue regarding collapse safety prediction. Incremental Dynamic Analysis (IDA) and fragility curves are utilized to estimate demand parameters and seismic performance levels of structures. Since producing these curves based on a large number of nonlinear dynamic analyses would be time-consuming, selection of appropriate earthquake ground motion records resulting in reliable responses with sufficient accuracy seems to be quite essential. The aim of this research study is to propose a methodology to assess the seismic behavior of reinforced concrete frames at collapse limit state via accurate estimation of seismic fragility curves for different Engineering Demand Parameters (EDPs) by using a limited number of ground motion records. Research results demonstrate that accurate estimating of structural collapse capacity is feasible through applying the proposed method offering an appropriate suite of limited ground motion records.

Influence of ground motion selection methods on seismic directionality effects

  • Cantagallo, Cristina;Camata, Guido;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.185-204
    • /
    • 2015
  • This study investigates the impact of the earthquake incident angle on the structural demand and the influence of ground motion selection and scaling methods on seismic directionality effects. The structural demand produced by Non-Linear Time-History Analyses (NLTHA) varies with the seismic input incidence angle. The seismic directionality effects are evaluated by subjecting four three-dimensional reinforced concrete structures to different scaled and un-scaled records oriented along nine incidence angles, whose values range between 0 and 180 degrees, with an increment of 22.5 degrees. The results show that NLTHAs performed applying the ground motion records along the principal axes underestimate the structural demand prediction, especially when plan-irregular structures are analyzed. The ground motion records generate the highest demand when applied along the lowest strength structural direction and a high energy content of the records increases the structural demand corresponding to this direction. The seismic directionality impact on structural demand is particularly important for irregular buildings subjected to un-scaled accelerograms. However, the orientation effects are much lower if spectrum-compatible combinations of scaled records are used. In both cases, irregular structures should be analyzed first with pushover analyses in order to identify the weaker structural directions and then with NLTHAs for different incidence angles.

The effect of different earthquake ground motion levels on the performance of steel structures in settlements with different seismic hazards

  • Isik, Ercan;Karasin, ibrahim Baran;Karasin, Abdulhalim
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.85-100
    • /
    • 2022
  • The updated Turkish Building Earthquake Code has been significantly renovated and expanded compared to previous seismic design codes. The use of earthquake ground motion levels with different probabilities of exceedance is one of the major advances in structural mechanics with the current code. This study aims to investigate the earthquake performance of steel structure in settlements with different seismic hazards for various earthquake ground motion levels. It is focused on earthquake and structural parameters for four different ground motion levels with different probabilities of exceedance calculated according to the location of the structure by the updated Turkish Hazard Map. For this purpose, each of the seven different geographical regions of Turkey which has the same seismic zone in the previous earthquake hazard map has been considered. Earthquake parameters, horizontal design elastic spectra obtained and comparisons were made for all different ground motion levels for the seven different locations, respectively. Structural analyzes for a sample steel structure were carried out using pushover analysis by using the obtained design spectra. It has been determined that the different ground motion levels significantly affect the expected target displacements of the structure for performance criteria. It is noted that the different locations of the same earthquake zone in the previous code with the same earthquake-building parameters show significant variations due to the micro zoning properties of the updated seismic design code. In addition, the main innovations of the updated code were discussed.

The influence of vertical ground motion on the seismic behavior of RC frame with construction joints

  • Yu, Jing;Liu, Xiaojun
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.407-420
    • /
    • 2016
  • The aim of this study is to investigate the effect of vertical ground motion (VGM) on seismic behavior of reinforced concrete (RC) regular frame with construction joints, and determine more proper modeling method for cast-in-situ RC frame. The four-story RC frames in the regions of 7, 8 and 9 earthquake intensity were analyzed with nonlinear dynamic time-history method. Two different methods of ground motion input, horizontal ground motion (HGM) input only, VGM and HGM input simultaneously were performed. Seismic responses in terms of the maximum vertex displacement, the maximum inter-story drift distribution and the plastic hinge distribution were analyzed. The results show that VGM might increase or decrease the horizontal maximum vertex displacement depending on the value of axial load ratio of column. And it will increase the maximum inter-story drift and change its distribution. Finally, proper modeling method is proposed according to the distribution of plastic hinges, which is in well agreement with the actual earthquake damage.

Development of the DGRS enriched in the high frequency range for APR1400 (고진등수 영역이 보강된 APR1400 설계지반응답스펙트럼의 개발)

  • 장영선;김태영;주광호;김종학
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.67-74
    • /
    • 2001
  • This paper presents the Safe Shutdown Earthquake(SSE) input motion for the seismic design of the Advanced Power Reactor 1400(APR1400). The Design Ground Response Spectra(DGRS) far the SSE is based on the design spectrum specified in regulatory Guide(RG) 1.60 of U.S. Nuclear Regulatory Commission(US NRC), anchored to a Peak Ground Acceleration(PGA) of 0.3g and enriched in the high frequency range. This SSE seismic input motion is to be applied to the seismic analysis as the free-field seismic motion at the ground surface of both the rock and generic soil sites fur APRI1400. The enrichment for APR1400 seismic input motion is performed considering the current US NRC regulations, the seismic hazard studies performed by the Lawrence Livermore National Laboratory (LINL) and Electric Power Research Institute(EPRI) for the Central and Eastern United States nuclear power plant sites, and the seismic input motions used in the design certifications of the three existing U.S. advanced standard plants. It is represented by a set of DGRS and the accompanying Target Power Spectral Density(PSD) Function in both the horizontal and vertical directions.

  • PDF