• Title/Summary/Keyword: Seismic mass

Search Result 501, Processing Time 0.022 seconds

Effectiveness of design procedures for linear TMD installed on inelastic structures under pulse-like ground motion

  • Quaranta, Giuseppe;Mollaioli, Fabrizio;Monti, Giorgio
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.239-260
    • /
    • 2016
  • Tuned mass dampers (TMDs) have been frequently proposed to mitigate the detrimental effects of dynamic loadings in structural systems. The effectiveness of this protection strategy has been demonstrated for wind-induced vibrations and, to some extent, for seismic loadings. Within this framework, recent numerical studies have shown that beneficial effects can be achieved by placing a linear TMD on the roof of linear elastic structural systems subjected to pulse-like ground motions. Motivated by these positive outcomes, closed-form design formulations have been also proposed to optimize the device's parameters. For structural systems that undergo a near-fault pulse-like ground motion, however, it is unlikely that their dynamic response be linear elastic. Hence, it is very important to understand whether such strategy is effective for inelastic structural systems. In order to provide new useful insights about this issue, the paper presents statistical results obtained from a numerical study conducted for three shear-type hysteretic (softening-type) systems having 4, 8 and 16 stories equipped with a linear elastic TMD. The effectiveness of two design procedures is discussed by examining the performances of the protected systems subjected to 124 natural pulse-like earthquakes.

Experimental and numerical study on the dynamic behavior of a semi-active impact damper

  • Zheng Lu;Mengyao Zhou;Jiawei Zhang;Zhikuang Huang;Sami F. Masri
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.455-467
    • /
    • 2023
  • Impact damper is a passive damping system that controls undesirable vibration with mass block impacting with stops fixed to the excited structure, introducing momentum exchange and energy dissipation. However, harmful momentum exchange may occur in the random excitation increasing structural response. Based on the mechanism of impact damping system, a semi-active impact damper (SAID) with controllable impact timing as well as a semi-active control strategy is proposed to enhance the seismic performance of engineering structures in this paper. Comparative experimental studies were conducted to investigate the damping performances of the passive impact damper and SAID. The extreme working conditions for SAID were also discussed and approaches to enhance the damping effect under high-intensity excitations were proposed. A numerical simulation model of SAID attached to a frame structure was established to further explore the damping mechanism. The experimental and numerical results show that the SAID has better control effect than the traditional passive impact damper and can effectively broaden the damping frequency band. The parametric studies illustrate the mass ratio and impact damping ratio of SAID can significantly influence the vibration control effect by affecting the impact force.

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Experimental investigation of the excitation frequency effects on wall stress in a liquid storage tank considering soil-structure-fluid interaction

  • Diego Hernandez-Hernandez;Tam Larkin;Nawawi Chouw
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.421-436
    • /
    • 2024
  • This research addresses experimentally the relationship between the excitation frequency and both hoop and axial wall stresses in a water storage tank. A low-density polyethylene tank with six different aspect ratios (water level to tank radius) was tested using a shake table. A laminar box with sand represents a soil site to simulate Soil-Structure Interaction (SSI). Sine excitations with eight frequencies that cover the first free vibration frequency of the tank-water system were applied. Additionally, Ricker wavelet excitations of two different dominant frequencies were considered. The maximum stresses are compared with those using a nonlinear elastic spring-mass model. The results reveal that the coincidence between the excitation frequency and the free-vibration frequency of the soil-tank-water system increases the sloshing intensity and the rigid-like body motion of the system, amplifying the stress development considerably. The relationship between the excitation frequency and wall stresses is nonlinear and depends simultaneously on both sloshing and uplift. In most cases, the maximum stresses using the nonlinear elastic spring-mass model agree with those from the experiments.

A study on correlation between electrical resistivity obtained from electrical resistivity logging and rock mass rating in-situ tunnelling site (전기비저항 검층으로 얻은 전기비저항과 터널 현장 암반등급의 상관관계에 관한 연구)

  • Lee, Kang-Hyun;Seo, Hyung-Joon;Park, Jin-Ho;Ahn, Hee-Yoon;Kim, Ki-Seog;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.503-516
    • /
    • 2012
  • Rock mass rating (RMR) is the key factor when designing the appropriate support pattern of tunnel projects. Borehole drilling is usually performed along the tunnel route in order to determine the rock mass rating to be used for tunnel design. The rock mass rating at the non-boring region between boreholes is usually assessed through geophysical surveys such as electrical prospecting, seismic prospecting, etc. Many studies were carried out to find out the correlation between electrical resistivity and rock mass rating. However, most researches were aimed at obtaining the relationship between the two parameters utilizing experimental results obtained from laboratory tests or electrical prospectings. In this paper, efforts were made to analyze and obtain relationships between the electrical resistivity obtained from in-situ electrical resistivity logging data and the rock mass rating. Correlation studies using field data showed that the electrical resistivity is highly correlated with the rock mass rating with the determination coefficient more than 90%. The correlation analysis was also carried out between RMR classification parameters and the electrical resistivity. It was shown that the correlation between the condition of discontinuities and the electrical resistivity was very high with the determination coefficient more than 80%; that between the groundwater condition and the electrical resistivity was very low with the determination coefficient less than 57%.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험)

  • Kim, Nam-Sik;Lee, Ji-Ho;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.35-43
    • /
    • 2004
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. In this study, compressive strength tests are conducted to analyze the equivalent modulus ratio of micro-concrete to normal-concrete. Then, equivalent modulus ratios are divided into multi-phase damage levels, which are basically dependent on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent multi-phase similitude law based on seismic damage levels, is developed. Test specimens, consisted of prototype structures and 1/5 scaled models as a reinforced concrete column, were designed and fabricated based on the equivalent modulus ratios already defined. Finally quasistatic and pseudodynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. It is confirmed that the equivalent multi-phase similitude law proposed in this study could be suitable for seismic performance tests on small-scale models.

Prediction of Column Axial Force in X-braced Seismic Steel Frames Considering Brace Buckling (가새좌굴을 고려한 X형 내진 가새골조의 기둥축력 산정법)

  • Yoon, Won Soon;Lee, Cheol Ho;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.523-535
    • /
    • 2014
  • According to the capacity design concept underlying current steel seimsic provisions, the braces in concentrically braced frames should dissipate seismic energy through cyclic tension yielding and compression buckling. On the other hand, the beams and the columns in the braced bay should remain elastic for gravity load actions and additional column axial forces resulting from the brace buckling and yielding. However, due to the difficulty in accumulating the yielding and buckling-induced column forces from different stories, empirical and often conservative approaches have been used in design practice. Recently a totally different approach was proposed by Cho, Lee, and Kim (2011) for the prediction of column axial forces in inverted V-braced frames by explicitly considering brace buckling. The idea proposed in their study is extended to X-braced seismic frames which have structural member configurations and load transfer mechanism different from those of inverted V-braced frames. Especially, a more efficient rule is proposed in combining multi-mode effects on the column axial forces by using the modal-mass based weighting factor. The four methods proposed in this study are evaluated based on extensive inelastic dynamic analysis results.

Fabrication of Piezoresistive Silicon Acceleration Sensor Using Selectively Porous Silicon Etching Method (선택적인 다공질 실리콘 에칭법을 이용한 압저항형 실리콘 가속도센서의 제조)

  • Sim, Jun-Hwan;Kim, Dong-Ki;Cho, Chan-Seob;Tae, Heung-Sik;Hahm, Sung-Ho;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.21-29
    • /
    • 1996
  • A piezoresistive silicon acceleration sensor with 8 beams, utilized by an unique silicon micromachining technique using porous silicon etching method which was fabricated on the selectively diffused (111)-oriented $n/n^{+}/n$ silicon subtrates. The width, length, and thickness of the beam was $100\;{\mu}m$, $500\;{\mu}m$, and $7\;{\mu}m$, respectively, and the diameter of the mass paddle (the region suspended by the eight beams) was 1.4 mm. The seismic mass on the mass paddle was formed about 2 mg so as to measure accelerations of the range of 50g for automotive applications. For the formation of the mass, the solder mass was loaded on the mass paddle by dispensing Pb/Sn/Ag solder paste. After the solder paste is deposited, Heat treatment was carried out on the 3-zone reflow equipment. The decay time of the output signal to impulse excitation of the fabricated sensor was observed for approximately 30 ms. The sensitivity measured through summing circuit was 2.9 mV/g and the nonlinearity of the sensor was less than 2% of the full scale output. The output deviation of each bridge was ${\pm}4%$. The cross-axis sensitivity was within 4% and the resonant frequency was found to be 2.15 KHz from the FEM simulation results.

  • PDF

Forced Vibration Test of a Real-Scale Structure and Design of HMD Controllers for Simulating Earthquake Response (실물 크기 구조물의 강제진동실험 및 지진응답 모사를 위한 HMD제어기 설계)

  • Lee, Sang-Hyun;Park, Eun-Churn;Youn, Kyung-Jo;Lee, Sung-Kyung;Yu, Eun-Jong;Min, Kyung-Won;Chung, Lan;Min, Jeong-Ki;Kim, Young-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.103-114
    • /
    • 2006
  • Forced vibration testing is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which were numerically calculated based on the updated FE model.

Bulk Micromachined Vibration Driven Electromagnetic Energy Harvesters for Self-sustainable Wireless Sensor Node Applications

  • Bang, Dong-Hyun;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1320-1327
    • /
    • 2013
  • In this paper, two different electromagnetic energy harvesters using bulk micromachined silicon spiral springs and Polydimethylsiloxane (PDMS) packaging technique have been fabricated, characterized, and compared to generate electrical energy from ultra-low ambient vibrations under 0.3g. The proposed energy harvesters were comprised of a highly miniaturized Neodymium Iron Boron (NdFeB) magnet, silicon spiral spring, multi-turned copper coil, and PDMS housing in order to improve the electrical output powers and reduce their sizes/volumes. When an external vibration moves directly the magnet mounted as a seismic mass at the center of the spiral spring, the mechanical energy of the moving mass is transformed to electrical energy through the 183 turns of solenoid copper coils. The silicon spiral springs were applied to generate high electrical output power by maximizing the deflection of the movable mass at the low level vibrations. The fabricated energy harvesters using these two different spiral springs exhibited the resonant frequencies of 36Hz and 63Hz and the optimal load resistances of $99{\Omega}$ and $55{\Omega}$, respectively. In particular, the energy harvester using the spiral spring with two links exhibited much better linearity characteristics than the one with four links. It generated $29.02{\mu}W$ of output power and 107.3mV of load voltage at the vibration acceleration of 0.3g. It also exhibited power density and normalized power density of $48.37{\mu}W{\cdot}cm-3$ and $537.41{\mu}W{\cdot}cm-3{\cdot}g-2$, respectively. The total volume of the fabricated energy harvesters was $1cm{\times}1cm{\times}0.6cm$ (height).