• Title/Summary/Keyword: Seismic isolation design

Search Result 246, Processing Time 0.026 seconds

Construction of Design Table for Envelope Curve Analysis of Base Isolated Buildings (면진건물의 포락해석을 위한 설계용 도표 산정면진건물의 포락해석을 위한 설계용 도표 산정면진건물의 포락해석을 위한 설계용 도표 산정)

  • Lee, Hyun-Ho;Cheon, Yeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.59-67
    • /
    • 2006
  • The aim of this study is to evaluate the design table for envelope curve analysis of base isolated buildings, which represent the period of base isolated buildings and the lateral displacement of base isolation devices. For the construction of design table, $V_E$ spectrum, which represents the energy, is developed instead of acceleration of seismic hazard. Based on the seismic coefficient of UBC 97, boundary period $T_G$ and maximum velocity response $V_0$ are proposed considering Korea seismic hazard. Using $T_G$ and $V_0$, finally, $V_E$ spectrum is developed for the four types of soil conditions. Base on the $V_E$ spectrum, design table for envelope curve analysis is also developed for soil types.

Concept Design of Vibration Isolation System for Development of Optical Payload of Satellite (위성광학탑재체 개발을 위한 나노급 방진장치 개념 설계)

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Kim, Young-Key;Moon, Guee-Won;Moon, Sang-Moo;Kim, Hong-Bea
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.949-952
    • /
    • 2005
  • According to the national space program in Korea, is satellites will be launch into space up to 2015. Especially, KARI is going to develope of its own a high resolution camera of less than 1m to be mounted on next Multipurpose Satellite. When performing testing of large spacecraft or hardware that will be launched into orbit, it is necessary to conduct a testing with space-simulated environment. To achieve this requirement, thermal vacuum chamber is generally used. KARI has been developed a very Large Thermal Vacuum Chamber(LTVC) from 2003 to accomodate future space program, such as KOMPSAT, COMS, and Launch vehicles. This new facility will be used to qualify the first self developed High Resolution Camera, which will be loaded on KOMPSAT-3. To perform an optical test for space camera, it is necessary to provide vibration free environment. Thus the vibration responses on the optical table due to external vibration should be minimized by using a special isolation system. In this paper, we propose the concept design of vibration isolation system for the development of the high resolution camera.

  • PDF

Seismic vulnerability analysis of multilink highway bridges considering spatially varying ground motions

  • Yu Zhang;Ruipeng Guo;Chen Liu;Li Tian;Hanlin Dong;Chao Li
    • Earthquakes and Structures
    • /
    • v.27 no.5
    • /
    • pp.385-399
    • /
    • 2024
  • Highway bridges usually extend over long distances and are vulnerable to the variation of ground motions. In this paper, a 5-link continuous bridge with a total length of 510 m was selected for seismic vulnerability analyses under consistent and multi-support excitations. Fragility curves for piers and bearings considering both the non-isolated and isolated conditions are generated through incremental dynamic analysis (IDA). The results show that for the non-isolated condition with elastomeric bearings (EBs), the junction piers between adjacent links are more vulnerable than interior piers within links under consistent excitation, whereas it is exactly the opposite for the bearings. Under the multi-support excitation, the fragility of the bearings at junction piers significantly increases due to the unsynchronized movement of adjacent links. For the isolated condition with lead-core rubber bearings (LRBs) and friction pendulum bearings (FPBs), the fragility of piers is effectively reduced compared to EBs, especially for FPBs and under multi-support excitation. The fragility of LRBs is lower than that of EBs under both excitation modes. The fragility of FPBs is apparently higher than that of the piers, controlling the vulnerability of the bridge. This study provides a reference for the seismic design of highway bridges.

A Study of Seismic Resistant Design for Base-Isolated Bridges(II) (지진에 대비한 기초분리 교량의 설계법에 관한 연구(II))

  • Lee, Sang Soo;Yu, ChulSoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.637-647
    • /
    • 1997
  • As stated in Part(I), the use of the isolator is meant to protect a structure from seismic risk, by concentrating the inelastic deformations to relatively cheap and replaceable devices while the rest of the structures remains elastic. This research has been carried out to investigate the effects of various structural parameters and isolator characteristics on the seismic response of Base Isolated Bridges. Simplified analysis method for practical design is developed by using the results. The Proposed Code-Type approach method can be used to estimate the inertial forces accurately, not only at the isolator but throughout the height of the Base-Isolated Bridges. The proposed method is recommended to use in preliminary design tool or even a final design tool for Base Isolated Bridges. For the validation of simplified design method, examples with artificial earthquake time history and design response spectrum for P.C Box Bridge with bilinear hysteretic steel damper are evaluated.

  • PDF

Experimental study on the compressive stress dependency of full scale low hardness lead rubber bearing

  • Lee, Hong-Pyo;Cho, Myung-Sug;Kim, Sunyong;Park, Jin-Young;Jang, Kwang-Seok
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.89-103
    • /
    • 2014
  • According to experimental studies made so far, design formula of shear characteristics suggested by ISO 22762 and JEAG 4614, representative design code for Lead Rubber Bearing(LRB) shows dependence caused by changes in compressive stress. Especially, in the case of atypical special structure, such as a nuclear power structure, placement of seismic isolation bearing is more limited compared to that of existing structures and design compressive stress is various in sizes. As a result, there is a difference between design factor and real behavior with regards to shear characteristics of base isolation device, depending on compressive stress. In this study, a full-scale low hardness device of LRB, representative base isolation device was manufactured, analyzed, and then evaluated through an experiment on shear characteristics related to various compressive stresses. With design compressive stress of the full-scale LRB (13MPa) being a basis, changes in shear characteristics were analyzed for compressive stress of 5 MPa, 10 MPa, 13 MPa, 15 MPa, and 20 MPa based on characteristics test specified by ISO 22762:2010 and based on the test result, a regression analysis was made to offer an empirical formula. With application of proposed design formula which reflected the existing design formula and empirical formula, trend of horizontal characteristics was analyzed.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

Alternative Approach to Prediction of Structural Performance Points (구조물의 성능점 예측을 위한 대안)

  • 김장훈;좌동훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.231-238
    • /
    • 2002
  • The AASHTO seismic base isolation design approach has been reviewed and modified to fit the nonlinear static analysis procedure for reinforced concrete structures in a simpler way. Such an adaptation may be possible for the fact that the reinforced concrete under development of damage due to earthquake loading keeps softening to result in period shifting toward longer side. The validity of the proposed approach was verified by applying it to the examples presented in the current state-of-the-practice approach.

  • PDF

A Study on the Seismic Performance Design of Waterproofing Materials Applied Single-side Walls on Underground Structures (지하 구조물 외벽에 적용되는 방수재료의 구조체 거동 및 진동 대응 성능 설계 제안 연구)

  • Kim, Soo-Yeon;Kim, Meong-Ji;Oh, Sang-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • In this study, the possibility of seismic performance design was proposed and the quality verification test method was reviewed as part of the design of waterproof performance in underground walls under accelerated environment conditions for waterproofing materials, which are barrier and finishing material that can prevent ingress or overflowing water from inside and outside of a building by attaching all of the construction materials used in construction structures. Considering the current state of earthquake-resistant design of construction materials in Korea and abroad, seismic product groups are rare and mostly dependent on construction methods because there are no regulations on materials, although there are still regulations on earthquake-resistant design in the building process under the current law. Overseas, it was possible to confirm that various building materials that gave seismic performance to non-structural materials, such as Japan, Canada, and Germany, are being developed. If it is possible to have a complementary response to earthquakes in the advanced external waterproofing materials, it can be expected to be applicable as leak prevention and prevention technology along with the seismic designed structure.

Seismic Response Evaluation of Seismically Isolated Nuclear Power Plant Structure Subjected to Gyeong-Ju Earthquake (면진된 원자력발전소 구조물의 경주지진 응답평가)

  • Kim, Gwang-Jeon;Yang, Kwang-Kyu;Kim, Byeong-Su;Kim, Hyeon-Jeong;Yun, Su-Jeong;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.453-460
    • /
    • 2016
  • The Gyeong-Ju earthquake in the magnitude of 5.8 on the Richter scaleoccurred in September 12, 2016. Because there are many nuclear power plants (NPP) near the epicenter of the Gyeong-Ju earthquake, the seismic stability of nuclear power plants is becoming a social problem. In order to evaluate the safety of seismically isolated NPP, the seismic response of a NPP subjected to the Gyeong-Ju earthquake was compared with those of 30 sets of artificial earthquakes corresponding to the nuclear standard design spectrum (NSDS). A 2-node model and a simple beam-stick model were used for the seismic analysis of seismically isolated NPP structures. Using 2-node model, the effect of internal temperature rise, decrease of shear stiffness, increase of lateral displacement and decrease of vertical stiffness according to nonlinear behavior of lead-rubber bearing (LRB) were evaluated. The displacement response, the acceleration response, and the shear force response of the seismically isolated nuclear containment structure were evaluated using the simple beam-stick model. It can be observed that the seismic responses of the isolated nuclear structure subjected to Gyeong-Ju earthquake is significantly less than those to the artificial earthquakes corresponding to NSDS.

Variations in the hysteretic behavior of LRBs as a function of applied loading

  • Ozdemir, Gokhan;Bayhan, Beyhan;Gulkan, Polat
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • The study presented herein focused on the change in hysteretic force-deformation behavior of lead rubber bearings (LRBs). The material model used to idealize response of LRBs under cyclic motion is capable of representing the gradual attrition in strength of isolator unit on account of lead core heating. To identify the effect of loading history on the hysteretic response of LRBs, a typical isolator unit is subjected to cyclic motions with different velocity, amplitude and number of cycles. Furthermore, performance of an LRB isolated single degree of freedom system is studied under different seismic input levels. Finally, the significance of lead core heating effect on LRBs is discussed by considering the current design approach for base isolated structures. Results of this study show that the response of an LRB is governed strongly by the amplitude and number of cycles of the motion and the considered seismicity level.