• Title/Summary/Keyword: Seismic imaging

Search Result 75, Processing Time 0.021 seconds

Reverse-time Migration using Surface-related Multiples (자유면 기인 겹반사파를 이용한 거꿀시간 참반사 보정)

  • Lee, Ganghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.41-53
    • /
    • 2018
  • In the traditional seismic processing, multiple reflections are treated as noise and therefore they are eliminated during data processing. Recently, however, many studies have begun to consider multiples as signals rather than noise for seismic imaging. Multiple reflections can illuminate an area where primary reflections are not able to cover, thus it is allowed that a smaller number of shots and receivers are used for imaging large areas. In order to verify this, surface-related multiples were used for reverse-time migration (RTM), and then we compared the results with conventional RTM images which are generated from primary reflections. To utilize multiples, we separated multiples from whole seismic data using surface-related multiple elimination (SRME) method. Numerical examples confirmed that the migration using multiples can image wider area than the conventional migration, particularly in the shallow subsurface layers. In addition, the migration of multiples could eliminate the acquisition footprints.

Development and Verification of Resistivity Seismic Dilatometer(RSDMT) System for Characterizing Soft Soil Site (연약지반조사를 위한 전기비저항 탄성파 Flat DMT 장비의 개발 및 검증)

  • Bang, Eun-Seok;Kim, Young-Sang;Sung, Nak-Hun;Park, Sam-Gyu;Seo, Dong-Nam;Lee, Sei-Hyun;Kim, Jung-Ho;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.623-634
    • /
    • 2007
  • The aim of this research is development and verification of resistivity seismic dilatometer (RSDMT) system. The resistivity module for obtaining resistivity-depth plot and seismic module for obtaining wave velocity-depth plot are attached to the conventional flat dilatometer testing equipment. To enhance reliability and repeatability of seismic part in RSDMT, automatic testing system including automatic surface source, PC based data acquisition system and operating program were developed. To obtain real resistivity value of soil, geometric factor for the array of electrodes in RSDMT was derived empirically. The verification studies for the developed RSDMT system were performed at the southeast side of Korea where soil improvement work is planned. SPT, CPT, geophysical subsurface imaging techniques and some laboratory tests were performed for the comparisons. As one penetration of RSDMT, various soil parameters could be obtained. The results of field test showed good repeatability and reliability in every part. From these studies, developed RSDMT system was checked and the effectiveness of this system was verified in light of proper evaluation of geotechnical characteristics of soft soil.

  • PDF

Analysis of source characteristics for high-resolution seismic surveys on a tidal flat (조간대 지역에서의 고해상 탄성파 탐사를 위한 파원 특성 분석)

  • Hong, Jong Guk;Kim, Gi Yeong;Kim, Han Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.100-110
    • /
    • 1999
  • In order to find a good seismic source for high-resolution reflection surveys on a tidal flat, characteristic features of several sources were examined through test recording by the walkaway configuration. The sources comprise portable vibrator, 1.2 kg monkey spanner, 4.7 kg sledge hammer, and weight drops with a 30 kg and a 100 kg iron ball, respectively. We analyzed raw and filtered seismic data for the resolution of individual events, then compared various seismic sources to define suitable one for the high-resolution survey in terms of energy level and frequency contents. The study reveals that the portable vibrator is the most suitable source for the detection of and imaging geologic structures less than 20-30 m deep in a tidal flat. We ascribe this to the wide frequency band and high-frequency contents of the portable vibrator. In contrast, the hammer may be an alternative where the target depth increases up to 100 m.

  • PDF

Development of a PC-based 3-D Seismic Visualization Software (PC 기반의 3차원 탄성파 자료 시각화 소프트웨어 개발 연구)

  • Kim, Hyeon-Gyu;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.35-39
    • /
    • 2003
  • A software to visualize and analyse 3-D seismic data is developed using OpenGL, one of the most popular 3-D graphic library, under the PC and Windows platform. The software can visualize the data as volume and slices, whose color distribution is specified by a special dialog box that can pick a color in RGB or HSV format. The dialog box can also designate opacity values so that several 3-D objects can be displayed superimposed each other. Horizon picking is implemented very easily with this software thanks to the guided picking method. The picked points from a horizon will compose a set of points, mesh, and a surface, which can be viewed and analysed in three dimensions.

Robust and Optimum Weighted Stacking of Seismic Data (탄성파 자료의 강인한 최적 가중 겹쌓기)

  • Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Stacking in seismic processing plays an important role in improving signal-to-noise ratio and imaging quality of seismic data. However, the conventional stacking method doesn't remove random noises with various distributions and outliers up to a satisfactory level. This paper introduces a robust and optimum weighted stack method which shows both robustness to outlier noises and optimum in removing random noises. This was achieved by combining the robust median stacking with the optimum weighted stacking using local correlation. Application of the method to synthetic data showed that the proposed method is very effective in suppressing random noises with various distributions including outliers.

3-D Seismic Profiling (3차원 탄성파탐사)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.739-744
    • /
    • 1996
  • 'Kite' is a newly developed single-channel seismic imaging system capable of producing high resolution three dimensional images of subbottom geology in one traverse of a survey region. The system consists of a horizontally towed hydrophone array and active source. The hydrophone array is towed axis perpendicular to ship direction and the airgun source at the end of the hydrophone array is excited at timed intervals during the progression. The construction of the three dimensional subbottom image was made simply by using conventional multichannel seismic reflection data processing techniques. Common source shot (CSS) gathers of the hydrophone traces are evaluated using Dix's equation for average interval velocity of each subbottom layer. From the interval velocity profile and the normal consolidation stress condition, values of shear modulus, porosity, and shear velocity are deduced from the chosen values of physical constants. The system has been successfully tested at several locations on the North Atlantic continental shelf.

  • PDF

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

Robust seismic waveform inversion using backpropagation algorithm (Hybrid L1/L2 를 이용한 주파수 영역 탄성파 파형역산)

  • Chung, Woo-Keen;Ha, Tae-Young;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.124-129
    • /
    • 2007
  • For seismic imaging and inversion, the inverted image depends on how we define the objective function. ${\ell}^1$-norm is more robust than ${\ell}^2$-norm. However, it is difficult to apply the Newton-type algorithm directly because the partial derivative for ${\ell^1$-norm has a singularity. In our paper, to overcome the difficulties of singularities, Huber function given by hybrid ${\ell}^1/{\ell}^2$-norm is used. We tested the robustness of our new object function with several noisy data set. Numerical results show that the new objective function is more robust to band limited spiky noise than the conventional object function.

  • PDF

Velocity Model Building using Waveform Inversion from Single Channel Engineering Seismic Survey (탄성파 파형역산을 이용한 엔지니어링 목적의 단일채널 탄성파 탐사자료에서의 속도모델 도출)

  • Choi, Yeon Jin;Shin, Sung Ryul;Ha, Ji Ho;Chung, Woo Keen;Kim, Won Sik
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.231-241
    • /
    • 2014
  • Recently, single channel seismic survey for engineering purpose have been used widely taking advantage of simple processing. However it is very difficult to obtain high fidelity subsurface image by single channel seismic due to insufficient fold coverage. Recently, seismic waveform inversion in multi channel seismic survey is utilized for accurate subsurface imaging even in complex terrains. In this paper, we propose the seismic waveform inversion algorithm for velocity model building using a single channel seismic data. We utilize the Gauss-Newton method and assume that subsurface model is 1-Dimensional. Seismic source estimation technique is used and offset effect is also corrected by removing delay time by offset. Proposed algorithm is verified by applying modified Marmousi2 model, and applied to field data set obtained in port of Busan.

A Review of Deep Learning-based Trace Interpolation and Extrapolation Techniques for Reconstructing Missing Near Offset Data (가까운 벌림 빠짐 해결을 위한 딥러닝 기반의 트레이스 내삽 및 외삽 기술에 대한 고찰)

  • Jiho Park;Soon Jee Seol;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.185-198
    • /
    • 2023
  • In marine seismic surveys, the inevitable occurrence of trace gaps in the near offset resulting from geometrical differences between sources and receivers adversely affects subsequent seismic data processing and imaging. The absence of data in the near-offset region hinders accurate seismic imaging. Therefore, reconstructing the missing near-offset information is crucial for mitigating the influence of seismic multiples, particularly in the case of offshore surveys where the impact of multiple reflections is relatively more pronounced. Conventionally, various interpolation methods based on the Radon transform have been proposed to address the issue of the nearoffset data gap. However, these methods have several limitations, leading to the recent emergence of deep-learning (DL)-based approaches as alternatives. In this study, we conducted an in-depth analysis of two representative DL-based studies to scrutinize the challenges that future studies on near-offset interpolation must address. Furthermore, through field data experiments, we precisely analyze the limitations encountered when applying previous DL-based trace interpolation techniques to near-offset situations. Consequently, we suggest that near-offset data gaps must be approached by extrapolation rather than interpolation.