• Title/Summary/Keyword: Seismic design codes

Search Result 307, Processing Time 0.021 seconds

Comparative in-plane pushover response of a typical RC rectangular wall designed by different standards

  • Dashti, Farhad;Dhakal, Rajesh P.;Pampanin, Stefano
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.667-689
    • /
    • 2014
  • Structural walls (also known as shear walls) are one of the common lateral load resisting elements in reinforced concrete (RC) buildings in seismic regions. The performance of RC structural walls in recent earthquakes has exposed some problems with the existing design of RC structural walls. The main issues lie around the buckling of bars, out-of plane deformation of the wall (especially the zone deteriorated in compression), reinforcement getting snapped beneath a solitary thin crack etc. This study compares performance of a typical wall designed by different standards. For this purpose, a case study RC shear wall is taken from the Hotel Grand Chancellor in Christchurch which was designed according to the 1982 version of the New Zealand concrete structures standard (NZS3101:1982). The wall is redesigned in this study to comply with the detailing requirements of three standards; ACI-318-11, NZS3101:2006 and Eurocode 8 in such a way that they provide the same flexural and shear capacity. Based on section analysis and pushover analysis, nonlinear responses of the walls are compared in terms of their lateral load capacity and curvature as well as displacement ductilities, and the effect of the code limitations on nonlinear responses of the different walls are evaluated. A parametric study is also carried out to further investigate the effect of confinement length and axial load ratio on the lateral response of shear walls.

Assessment of Surface Topographic Effect in Earthquake Ground Motion on the Upper Slope via Two-Dimensional Geotechnical Finite Element Modeling (이차원 지반 유한요소 모델링을 통한 사면상부 지진지반운동의 지표면 지형효과 분석)

  • Sun, Chang-Guk;Bang, Kiho;Cho, Wanjei
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.201-213
    • /
    • 2015
  • Site effects resulting in the amplification of earthquake ground motion are strongly influenced not only by the subsurface soil conditions and structure, but also by the surface topography. Yet, over the last several decades, most studies of site-specific seismic responses in Korea have focused primarily on the seismic amplification associated with geologic and soil conditions. For example, the effects of local geology are now well established and have been incorporated into current Korean seismic design codes, whereas topographic effects have not been considered. To help address this shortcoming, two-dimensional (2D) seismic site response analyses, using finite element (FE) ground modeling with three different slope angles, were performed in order to assess the site effects of surface topography. We then compared our results, specifically peak ground acceleration (PGA) and acceleration response spectrum, to those of one-dimensional (1D) FE model analyses conducted alongside our study. Throughout much of the upper slope region, PGAs and spectral accelerations are larger in the 2D analyses than in the 1D analyses as a result of the topographic effect.

Retrofit strategy issues for structures under earthquake loading using sensitivity-optimization procedures

  • Manolis, G.D.;Panagiotopoulos, C.G.;Paraskevopoulos, E.A.;Karaoulanis, F.E.;Vadaloukas, G.N.;Papachristidis, A.G.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.109-127
    • /
    • 2010
  • This work aims at introducing structural sensitivity analysis capabilities into existing commercial finite element software codes for the purpose of mapping retrofit strategies for a broad group of structures including heritage-type buildings. More specifically, the first stage sensitivity analysis is implemented for the standard deterministic environment, followed by stochastic structural sensitivity analysis defined for the probabilistic environment in a subsequent, second phase. It is believed that this new generation of software that will be released by the industrial partner will address the needs of a rapidly developing specialty within the engineering design profession, namely commercial retrofit and rehabilitation activities. In congested urban areas, these activities are carried out in reference to a certain percentage of the contemporary building stock that can no longer be demolished to give room for new construction because of economical, historical or cultural reasons. Furthermore, such analysis tools are becoming essential in reference to a new generation of national codes that spell out in detail how retrofit strategies ought to be implemented. More specifically, our work focuses on identifying the minimum-cost intervention on a given structure undergoing retrofit. Finally, an additional factor that arises in earthquake-prone regions across the world is the random nature of seismic activity that further complicates the task of determining the dynamic overstress that is being induced in the building stock and the additional demands placed on the supporting structural system.

New optimum distribution of lateral strength of shear-type buildings for uniform damage

  • Donaire-Avila, Jesus;Lucchini, Andrea;Benavent-Climent, Amadeo;Mollaioli, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.279-291
    • /
    • 2020
  • The seismic design of conventional frame structures is meant to enhance plastic deformations at beam ends and prevent yielding in columns. To this end, columns are made stronger than beams. Yet yielding in columns cannot be avoided with the column-to-beam strength ratios (about 1.3) prescribed by seismic codes. Preventing plastic deformations in columns calls for ratios close to 4, which is not feasible for economic reasons. Furthermore, material properties and the rearrangement of geometric shapes inevitably make the distribution of damage among stories uneven. Damage in the i-th story can be characterized as the accumulated plastic strain energy (Wpi) normalized by the product of the story shear force (Qyi) and drift (δyi) at yielding. Past studies showed that the distribution of the plastic strain energy dissipation demand, Wpi/ΣWpj, can be evaluated from the deviation of Qyi with respect to an "optimum value" that would make the ratio Wpi/(Qyiδyi) -i.e. the damage- equal in all stories. This paper investigates how the soil type and ductility demand affect the optimum lateral strength distribution. New optimum lateral strength distributions are put forth and compared with others proposed in the literature.

Analytical investigation of the cyclic behaviour of I-shaped steel beam with reinforced web using bonded CFRP

  • Mohabeddine, Anis I.;Eshaghi, Cyrus;Correia, Jose A.F.O.;Castro, Jose M.
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.447-456
    • /
    • 2022
  • Recent experimental studies showed that deep steel I-shaped profiles classified as high ductility class sections in seismic design international codes exhibit low deformation capacity when subjected to cyclic loading. This paper presents an innovative retrofit solution to increase the rotation capacity of beams using bonded carbon fiber reinforced polymers (CFRP) patches validated with advanced finite element analysis. This investigation focuses on the flexural cyclic behaviour of I-shaped hot rolled steel deep section used as beams in moment-resisting frames (MRF) retrofitted with CFRP patches on the web. The main goal of this CFRP reinforcement is to increase the rotation capacity of the member without increasing the overstrength in order to avoid compromising the strong column-weak beam condition in MRF. A finite element model that simulates the cyclic plasticity behavior of the steel and the damage in the adhesive layer is developed. The damage is modelled using the cohesive zone modelling (CZM) technique that is able to capture the crack initiation and propagation. Details on the modelling techniques including the mesh sensitivity near the fracture zone are presented. The effectiveness of the retrofit solution depends strongly on the selection of the appropriate adhesive. Different adhesive types are investigated where the CZM parameters are calibrated from high fidelity fracture mechanics tests that are thoroughly validated in the literature. This includes a rigid adhesive commonly found in the construction industry and two tough adhesives used in the automotive industry. The results revealed that the CFRP patch can increase the rotation capacity of a steel member considerably when using tough adhesives.

Analytical Study on Seismic Performance Assesment of Reinforced Concrete Shear Wall using High-Strength Reinforcing Bar (고강도 철근을 적용한 철근콘크리트 전단벽체의 내진성능평가를 위한 해석적 연구)

  • Cheon, Ju-Hyun;Kim, Kyung-Min;Park, Kwang-Min;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • The purpose of this study is to establish a reasonable analytical method for the estimation of overall behavior characteristic from cracking to yielding of rebar and crushing of concrete and seismic performance of reinforced concrete shear wall with high-strength reinforcing bar. A total of 8 specimens of reinforced concrete walls which have constant aspect ratio and a variety of variables such as reinforcement ratio, reinforcement yielding strength, reinforcement details, concrete design strength, section shape and whether lateral restraint hoop were selected and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the proposed constitutive equation by the authors. The mean and coefficient of variation for maximum load from the experiment and analysis results was predicted 1.04 and 8%. The mean and coefficient of variation for displacement corresponding maximum load from the experiment and analysis results was predicted 1.17 and 19% respectively. The analytical results were predicted relatively well the fracture mode and the overall behavior until fracture for all specimens. These results are expected to be used as basic data for application of high-strength reinforcing bar to design codes in the future.

Evaluation of Seismic Performance of Pile-supported Wharves with Batter Piles through Response Spectrum Analysis (응답스펙트럼해석을 통한 경사말뚝이 설치된 잔교식 안벽의 내진성능 평가)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, JongKwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.57-71
    • /
    • 2021
  • The pile-supported wharf is the port structure in which the upper deck is supported by piles or columns. By installing batter piles in this structure, horizontal load such as earthquake loads can be partially delivered as axial forces. The codes suggests using the response spectrum analysis as a preliminary design method for seismic design of pile-supported wharf, and suggests modeling the piles using virtual fixed points or soil spring methods for this analysis. Recently, several studies have been conducted on pile-supported wharves composed of vertical piles to derive a modeling method that appropriately simulates the dynamic response of structures during response spectrum analysis. However, studies related to the response spectrum analysis of pile-supported wharves with batter piles are insufficient so far. Therefore, this study performed the dynamic centrifuge model test and response spectrum analysis to evaluate the seismic performance according to the modeling method of pile-supported wharves with batter piles. As a result of test and analysis, it is confirmed that modeling using the Terzaghi (1955) constant of horizontal subgrade reaction (nh) most appropriately simulates the actual response in the case of the pile-supported wharf with batter piles.

Evaluation of Seismic Performance of Pile-supported Wharves Installed in Saturated Sand through Response Spectrum Analysis and Dynamic Centrifuge Model Test (동적원심모형실험 및 응답스펙트럼해석을 통한 포화지반에 관입된 잔교식 안벽의 내진성능 평가)

  • Yun, Jung-Won;Han, Jin-Tae;Lee, Seokhyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.73-87
    • /
    • 2021
  • Pile-supported wharf is a structure that can transmit and receive cargo, and it is mainly installed on saturated inclined ground. In the seismic design of these structures, the codes suggest using the response spectrum analysis method as a preliminary design method. However, guideline on modeling method for pile-supported wharf installed in saturated soil is lacking. Therefore, in this study, the dynamic centrifuge model test and response spectrum analysis were performed to evaluate the seismic performance of pile-supported wharf installed into the saturated soil. For the test, some sections (3×3 pile group) among the pile-supported wharf were selected, and they were classified into two model (dry and saturated sand model). Then the response spectrum analysis was performed by using the soil spring method to the test model. As a result of test and analysis, the m om ent difference occurred within a m axim um of 51% in the dry sand m odel and the saturated sand model where liquefaction does not occur, and it was found that the pile moment by depth was properly simulated. Therefore, in the case of these models, it is appropriate to perform the modeling using the Terzaghi (1955) constant of horizontal subgrade reaction (nh)

Plastic hinge length of RC columns considering soil-structure interaction

  • Mortezaei, Alireza
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.679-702
    • /
    • 2013
  • During an earthquake, soils filter and send out the shaking to the building and simultaneously it has the role of bearing the building vibrations and transmitting them back to the ground. In other words, the ground and the building interact with each other. Hence, soil-structure interaction (SSI) is a key parameter that affects the performance of buildings during the earthquakes and is worth to be taken into consideration. Columns are one of the most crucial elements in RC buildings that play an important role in stability of the building and must be able to dissipate energy under seismic loads. Recent earthquakes showed that formation of plastic hinges in columns is still possible as a result of strong ground motion, despite the application of strong column-weak beam concept, as recommended by various design codes. Energy is dissipated through the plastic deformation of specific zones at the end of a member without affecting the rest of the structure. The formation of a plastic hinge in an RC column in regions that experience inelastic actions depends on the column details as well as soil-structure interaction (SSI). In this paper, 854 different scenarios have been analyzed by inelastic time-history analyses to predict the nonlinear behavior of RC columns considering soil-structure interaction (SSI). The effects of axial load, height over depth ratio, main period of soil and structure as well as different characteristics of earthquakes, are evaluated analytically by finite element methods and the results are compared with corresponding experimental data. Findings from this study provide a simple expression to estimate plastic hinge length of RC columns including soil-structure interaction.

Determination of earthquake safety of RC frame structures using an energy-based approach

  • Merter, Onur;Ucar, Taner;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.689-699
    • /
    • 2017
  • An energy-based approach for determining earthquake safety of reinforced concrete frame structures is presented. The developed approach is based on comparison of plastic energy capacities of the structures with plastic energy demands obtained for selected earthquake records. Plastic energy capacities of the selected reinforced concrete frames are determined graphically by analyzing plastic hinge regions with the developed equations. Seven earthquake records are chosen to perform the nonlinear time history analyses. Earthquake plastic energy demands are determined from nonlinear time history analyses and hysteretic behavior of earthquakes is converted to monotonic behavior by using nonlinear moment-rotation relations of plastic hinges and plastic axial deformations in columns. Earthquake safety of selected reinforced concrete frames is assessed by using plastic energy capacity graphs and earthquake plastic energy demands. The plastic energy dissipation capacities of the frame structures are examined whether these capacities can withstand the plastic energy demands for selected earthquakes or not. The displacements correspond to the mean plastic energy demands are obtained quite close to the displacements determined by using the procedures given in different seismic design codes.