• Title/Summary/Keyword: Seismic deformation method

Search Result 238, Processing Time 0.021 seconds

Numerical and experimental study of the nested-eccentric-cylindrical shells damper

  • Reisi, Alireza;Mirdamadi, Hamid Reza;Rahgozar, Mohammad Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.637-648
    • /
    • 2020
  • In this study, a new steel cylindrical shell configuration of the dissipative energy device is proposed to improve lateral ductility and to reduce the damage of the structures against seismic forces. Four nested-eccentric- cylindrical shells are used to constructing this device; therefore, this proposed device is named nested-eccentric-cylindrical shells damper (NECSD). The particular configuration of the nested-eccentric-cylindrical shells is applied to promote the mechanical characteristics, stability, and overall performance of the damper in cyclic loads. Shell-type components are performed as a combination of series and parallel non-linear springs into the in-plan plastic deformation. Numerical analysis with respect to dimensional variables are used to calculate the mechanical characteristics of the NECSD, and full-scale testing is conducted for verifying the numerical results. The parametric study shows the NECSD with thin shells were more flexible, while devices with thick shells were more capacious. The results from numerical and experimental studies indicate that the NECSD has a stable behavior in hysteretic loops with highly ductile performance, and can provide appropriate dissipated energy under cyclic loads.

Fabrication of an acceleration sensor using silicon micromachining and reactive ion etching (실리콘 마이크로머시닝과 RIE를 이용한 가속도센서의 제조)

  • Kim, Dong-Jin;Kim, Woo-Jeong;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.430-436
    • /
    • 1997
  • A piezoresistive acceleration sensor for 30 G has been fabricated by silicon micromachining method using SDB(silicon direct bonding) wafer. The structure of the piezoresistive acceleration sensor consists of a seismic square pillar type mass and four beams. This structure was fabricated by reactive ion etching and chemical etching using KOH-etchant. The rectangular square structure is used in order to compensate the deformation of the edges due to underetching. The fabricated sensor showed a linear output voltage-acceleration characteristics and its sensitivity was about $88{\mu}V/V{\cdot}g$ from 0 to 10 G.

  • PDF

Hysteretic Behaviors of Metallic Dampers with the Various Slit Shape (슬릿형상에 따른 강재댐퍼의 이력거동)

  • Lee, Hyun Ho;Kim, Seh Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.199-208
    • /
    • 2011
  • The purpose of this study is to evaluate of the strength and deformation capacity of metallic dampers with the variable slit shape. For this purpose, 12 metallic damper specimens were prepared and shear testing was performed. According to the test results, the S shaped metallic damper with the strut height of 200mm and angle of $60^{\circ}$ shows better hysteretic performance than any other specimens. By making a comparison between the yield strength in test and the proposed strength formula, test results shows larger yield strength than calculation method.

International Research on Geotechnical Risk & Landslide Hazards (지반공학적 재해 및 산사태 위험도 분석에 관한 연구)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.444-455
    • /
    • 2009
  • Great concerns on geotechnical risk & hazard assessment have been increased due to human and economic damage by natural disasters with recent global climate changes. In this paper, geotechnical problems in particular, landslides which is interested in European countries and North America, were mainly discussed. For these, 18 key topics on geotechnical risk and hazards which had been discussed at the LARAM 2008 workshop in Italy were analyzed after grouping by subjects. Main topic contents consisted of applications such as field measurement, early warning systems, uncertainty analysis of parameters using radar, optical data and statistical theory and so on. And the problems related to analysis of vulnerability and deformation due to earthquakes, investigation of gas zone using seismic reflection data in a landslide area, risk quantification and hazard assessment of landslide movements and multi-dimensional analysis for stability of complex slopes were attracted. Also, there were studies on risk matters of cultural heritage, the blockglide of clayey ground, simulations of debris flows based on GIS, quantification of the failure processes of rock slopes, a meshless method for 3D crack modelling, and finally risk assessment for cryological processes due to global warming.

  • PDF

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.741-758
    • /
    • 2013
  • In this study, inelastic displacement ratios are investigated for existing systems with known lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil structure interaction analyses are conducted by means of equivalent fixed base model effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or degrading behavior as a function of structural period ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}$/T). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Dynamic stress, strain and deflection analysis of pipes conveying nanofluid buried in the soil medium considering damping effects subjected to earthquake load

  • Abadi, M. Heydari Nosrat;Darvishi, H. Hassanpour;Nouri, A.R. Zamani
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.445-452
    • /
    • 2019
  • In this paper, dynamic stress, strain and deflection analysis of concrete pipes conveying nanoparticles-water under the seismic load are studied. The pipe is buried in the soil which is modeled by spring and damper elements. The Navier-Stokes equation is used for obtaining the force induced by the fluid and the mixture rule is utilized for considering the effect of nanoparticles. Based on refined two variables shear deformation theory of shells, the pipe is simulated and the equations of motion are derived based on energy method. The Galerkin and Newmark methods are utilized for calculating the dynamic stress, strain and deflection of the concrete pipe. The influences of internal fluid, nanoparticles volume percent, soil medium and damping of it as well as length to diameter ratio of the pipe are shown on the dynamic stress, strain and displacement of the pipe. The results show that with enhancing the nanoparticles volume percent, the dynamic stress, strain and deflection decrease.

Fuzzy neural network controller of interconnected method for civil structures

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.385-394
    • /
    • 2022
  • Recently, an increasing number of cutting-edged studies have shown that designing a smart active control for real-time implementation requires piles of hard-work criteria in the design process, including performance controllers to reduce the tracking errors and tolerance to external interference and measure system disturbed perturbations. This article proposes an effective artificial-intelligence method using these rigorous criteria, which can be translated into general control plants for the management of civil engineering installations. To facilitate the calculation, an efficient solution process based on linear matrix (LMI) inequality has been introduced to verify the relevance of the proposed method, and extensive simulators have been carried out for the numerical constructive model in the seismic stimulation of the active rigidity. Additionally, a fuzzy model of the neural network based system (NN) is developed using an interconnected method for LDI (linear differential) representation determined for arbitrary dynamics. This expression is constructed with a nonlinear sector which converts the nonlinear model into a multiple linear deformation of the linear model and a new state sufficient to guarantee the asymptomatic stability of the Lyapunov function of the linear matrix inequality. In the control design, we incorporated H Infinity optimized development algorithm and performance analysis stability. Finally, there is a numerical practical example with simulations to show the results. The implication results in the RMS response with as well as without tuned mass damper (TMD) of the benchmark building under the external excitation, the El-Centro Earthquake, in which it also showed the simulation using evolved bat algorithmic LMI fuzzy controllers in term of RMS in acceleration and displacement of the building.

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

Development of Integrated Model of Boiler and Its Supporting Steel Structure of Coal-Fired Power Plant for Finite Element Analysis (유한요소해석을 위한 석탄화력발전소의 보일러와 지지 철골의 통합모델 개발)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.9-19
    • /
    • 2020
  • An integrated finite element model composed of a boiler and its supporting steel structure for a 375-MW coal-fired power plant was developed. This study used the developed model for seismic analysis using SAP2000 software. For the complex superheaters, reheaters, economizers, and membrane walls of the boiler, which consisted of numerous tubes, a method of modeling them by the equivalent elements in the viewpoint of stiffness and/or inertia was proposed. In addition, a method of modeling for the connection between the boiler and steel structure was proposed. Many hangers that connect the boiler to the girders of a steel structure were transformed into equivalent hangers by decreasing the number. The displacements of the boiler stoppers on the buckstay and the posts of the steel structure were coupled by considering their interface condition. Static analysis under the self-loading condition for the developed integrated model was implemented, and the results of deformation indicated that the behavior of the steel members and the major components of the boiler were appropriate. In conclusion, the integrated model developed in this study can be used to evaluate the safety of the boiler and steel structure under seismic loads.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).