• Title/Summary/Keyword: Seismic condition

Search Result 430, Processing Time 0.022 seconds

Hydrocarbon generation and indicator in the western Ulleung Basin (울릉분지 서부에서의 탄화수소 생성 및 지표)

  • Ryu, Byong-Jae;Kim, Ji-Hoon;Lee, Young-Joo;Riedel, M.;Hyndman, R.D.;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.507-510
    • /
    • 2007
  • Piston cores retrieved from the western Ulleung Basin, East Sea were analyzed to examine the potential for hydrocarbon generation and to determine the hydrocarbon indicators. 2D multi-channel reflection seismic and Chirp data were also investigated for mapping and characterizing the geophysical hydrocarbon indicators such as BSR (bottom simulating reflector), blank zone, pock-mark etc. High organic carbon contents and sedimentation rates that suggest good condition for hydrocarbon generation. High pressure and low temperature condition, and high residual hydrocarbon concentrations are favor the formation of natural gas hydrate. In the piston cores, cracks generally oriented to bedding may indicate the gas expansion. The seismic data show several BSRs that are associated with natural gas hydrates and underlying free gas. A number of vertical to sub-vertical blank zones were well identified in the seismic sections. They often show the seismic pull-up structures, probably indicating the presence of high velocity hydrates. Numerous pockmarks were also observed in the Chirp profiles. They may indicate the presence of free gas below the hydrate stability zone as well.

  • PDF

Robust seismic retrofit design framework for asymmetric soft-first story structures considering uncertainties

  • Assefa Jonathan Dereje;Jinkoo Kim
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.249-260
    • /
    • 2023
  • The uncertainties involved in structural performances are of importance when the optimum number and property of seismic retrofit devices are determined. This paper proposes a seismic retrofit design framework for asymmetric soft-first-story buildings, considering uncertainties in the soil condition and seismic retrofit device. The effect of the uncertain parameters on the structural performance is used to find a robust and optimal seismic retrofit solution. The framework finds a robust and optimal seismic retrofit solution by finding the optimal locations and mechanical properties of the seismic retrofit device for different realizations of the uncertain parameters. The structural performance for each realization is computed to evaluate the effect of the uncertainty parameters on the seismic performance. The framework utilizes parallel processing to decrease the computationally intensive nonlinear dynamic analysis time. The framework returns a robust design solution that satisfies the given limit state for every realization of the uncertain parameters. The proposed framework is applied to the seismic retrofit design of a five-story asymmetric soft-first-story case study structure retrofitted with a viscoelastic damper. Robust optimal parameters for retrofitting a structure to satisfy the limit state for the different realizations of the uncertain parameter are found using the proposed framework. According to the performance evaluation results of the retrofitted structure, the developed framework is proved effective in the seismic retrofit of the asymmetric structure with inherent uncertainties.

Infinite Slope Stability to Analyze the Effects of Rainfall and Vertical Seismic Coefficient in Limestone Area (강우와 연직 지진계수의 영향도 분석을 위한 석회암지역의 무한사면 안정해석)

  • Moon, Seong-Woo;Kim, Hyeong-Sin;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.175-184
    • /
    • 2020
  • In Korea, there are many regulations and cases for horizontal seismic coefficient to pseudo-static analysis of slope, but there are insufficient regulations and cases for vertical seismic coefficient. Therefore, geological investigation and laboratory tests were conducted to analyze the effect of the vertical seismic coefficient on slope stability, and pseudo-static analyses based on infinite slope stability analysis were performed by using those results. As a result, if the earthquake magnitude is less than M 5.0, the effect of the vertical seismic coefficient is not significant, and if the earthquake magnitude is more than M 6.0, the vertical seismic coefficient largely increases the unstable areas of Fs ≤ 1.1. These tendency is more distinct in rainfall condition than without rainfall condition.

Seismic performance of South Nias traditional timber houses: A priority ranking based condition assessment

  • Sodangi, Mahmoud;Kazmi, Zaheer Abbas
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.731-742
    • /
    • 2020
  • Due to incessant earthquakes, many historic South Nias traditional timber houses have been damaged while some still stand today. As Nias is part of an extremely active tectonic region and the buildings are getting older by day, it is essential that these unique houses are well maintained and functioning well. A post-earthquake condition assessment was conducted on 2 selected buildings; 'Building A' survived the seismic shakings while 'Building B' got severely damaged. The overall condition assessment of "Building A' was found out to be poor and the main structural members were not performing as intended. In 'Building B', the columns were not well anchored to the ground, no tie beams to tie the columns together, and eventually, the timber columns moved in various directions during the earthquake. The frequent earthquakes along with deterioration due to lack of proper maintenance program are responsible for the non-survival of the buildings. Thus, a process guideline for managing the maintenance of these buildings was proposed. This is necessary because managing the maintenance works could help to extend the life of the buildings and seek to avoid the need for potentially expensive and disruptive intervention works, which may damage the cultural significance of the buildings.

A Study on the Development of a Seismic Response Monitoring System for Cable Bridges by Using Accelerometers (가속도계를 이용한 사장교의 지진거동 계측시스템 개발에 대한 연구)

  • Jeong, Seong-Hoon;Jang, Won-Seok;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.283-292
    • /
    • 2021
  • In this study, a structural health monitoring system for cable-stayed bridges is developed. In the system, condition assessment of the structure is performed based on measured records from seismic accelerometers. Response indices are defined to monitor structural safety and serviceability and derived from the measured acceleration data. The derivation process of the indices is structured to follow the transformation from the raw data to the outcome. The process includes noise filtering, baseline correction, numerical integration, and calculation of relative differences. The system is packed as a condition assessment program, which consists of four major processes of the structural health evaluation: (i) format conversion of the raw data, (ii) noise filtering, (iii) generation of response indices, and (iv) condition evaluation. An example set of limit states is presented to evaluate the structural condition of the test-bed and cable-stayed bridge.

Estimation of Hysteretic Behaviors of a Seismic Isolator Using a Regularized Output Error Estimator (정규화된 OEE를 이용한 지진격리장치의 이력거동 추정)

  • 박현우;전영선;서정문
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.85-92
    • /
    • 2003
  • Hysteretic behaviors of a seismic isolator are identified by using the regularized output error estimator (OEE) based on the secant stiffness model. A proper regularity condition of tangent stiffness for the current OEE is proposed considering the regularity condition of Duhem hysteretic operator. The proposed regularity condition is defined by 12-norm of the tangent stiffness with respect to time. The secant stiffness model for the OEE is obtained by approximating the tangent stiffness under the proposed regularity condition by the secant stiffness at each time step. A least square method is employed to minimize the difference between the calculated response and measured response for the OEE. The regularity condition of the secant stiffness is utilized to alleviate ill-posedness of the OEE and to yield numerically stable solutions through the regularization technique. An optimal regularization factor determined by geometric mean scheme (GMS) is used to yield appropriate regularization effects on the OEE.

  • PDF

Seismic Response of Multi-Supported Spatial Structure under Seismic Excitation (다중지점 지진하중에 대한 아치구조물의 지진응답 분석)

  • Kim, Gee-Cheo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.4
    • /
    • pp.57-66
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response for seismic design of spatial structure. Keel arch structure is used as an example structure because it has primary characteristics of spatial structures. In case of spatial structures with different ground condition and time lag, multiple support excitation may be subjected to supports of a keel arch structure. In this study, the response of the keel arch structure under multiple support excitation and with time lag are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic responses of spatial structure under multiple support excitation are different from those of spatial structure under simple excitation. And the seismic response of spatial structure with time lag are different from those of spatial structure without time lag. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation and time lag because the spatial structure supports may be different and very long span. It is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation.

Decision Making of Seismic Performance Management Using Seismic Risk Assessment (지진위험도평가 방법을 이용한 내진성능관리 의사결정)

  • Kim, Dong Joo;Choi, Ji Hye;Kim, Byeong Hwa
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.329-339
    • /
    • 2019
  • The strategy for the management of earthquakes is shifting from post recovery to prevention; therefore, seismic performance management requires quantitative predictions of damage and the establishment of strategies for initial responses to earthquakes. Currently, seismic performance evaluation for seismic management in Korea consists of two stages: preliminary evaluation and detailed evaluation. Also, the priority of seismic performance management is determined in accordance with the preliminary evaluation. As a deterministic method, preliminary evaluation quantifies the physical condition and socio-economic importance of a facility by various predetermined indices, and the priority is decided by the relative value of the indices; however, with the deterministic method it is difficult to consider any uncertainty related to the return-year, epicenter, and propagation of seismic energy. Also this method cannot support tasks such as quantitative socio-economic damage and the provision of data for initial responses to earthquakes. Moreover, indirect damage is often greater than direct damage; therefore, a method to quantify damage is needed to enhance accuracy. In this paper, a Seismic Risk Assessment is used to quantify the cost of damage of road facilities in Pohang city and to support decision making.

Seismic Response Analysis Considering the Site Effect in Two Dimensional Cases (부지효과를 고려한 2차원 평면상의 지진응답해석)

  • 김민규;임윤묵;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.83-90
    • /
    • 2001
  • The site effects of local geological conditions on seismic ground motion are performed using 2D numerical method. For the analysis, a numerical method far ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. In order to verify the seismic response analysis, the results are compared with those of commercial code. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis of the site effect in 2D problem.

  • PDF

Seismic Response Analysis of the Concrete Face Rockfill Dam (콘크리트표면차수벽령 석괴댐의 지진응답해석)

  • 오병현;임정열;이종옥
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.147-154
    • /
    • 2001
  • In this study, comprehensive seismic performance analysis were performed for the concrete face rockfill dam(CFRD) designed seismic coefficient method(0. 10g). The static and pseudo-static FEM analysis, limited equilibrium method and dynamic FEM analysis were used for the dam safety analysis. The results of the seismic analysis were that the minimum factor of safety of down slope was 1.2 and horizontal displacement increased 8cm and vertical displacement increased 1.2cm at dam crest rather than those of static condition. The model dam did not show any serious tai lure in seismic stabi1ity for 0.13g. And much more research is still necessary in seismic safety of CFRD.

  • PDF