• 제목/요약/키워드: Seismic code

검색결과 671건 처리시간 0.034초

Overview of Seismic Loads and Application of Local Code Provisions for Tall Buildings in Baku, Azerbaijan

  • Choi, Hi Sun;Sze, James;Ihtiyar, Onur;Joseph, Leonard
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.65-71
    • /
    • 2014
  • Baku, the capital of Azerbaijan, has seen a boom in construction in recent years. The old Baku city has been rapidly transforming into a new hub of high-rise buildings and lively cultural centers hosting the Euro Vision Song Contest in 2012 and European Games in 2015. A major population shift to Baku from its suburbs and the countryside has resulted in the doubling of Baku's population in the 4 years between 2009 and 2013. As of January 2013, Baku's population reached four million people, 43% of the citizens in Azerbaijan according to The State Statistical Committee of Azerbaijan. With this trend, the city needs more high-rise buildings to accommodate rapidly increasing demands for more housing and business space. Until the Azerbaijan Seismic Building Code was published in 2010 and became effective, many different seismic criteria, in terms of building codes and seismic intensities, were used for all new high-rise projects in Baku. Some designers used the SNIP (Russian) code with seismic level 9 or level 8 with 1 point penalty. Others used the Turkish code with Seismic Zone 1, UBC 97 with Zone 2 through 4, or IBC with Sa = 0.75 g through 1.0 g. The seismic intensity is now clarified with the Azerbaijan Seismic Building Code. However, the Azerbaijan Seismic Building Code is appropriate for low-rise buildings applications but may be inappropriate for high-rise project applications. This is because the code-defined response spectrum yields unrealistically conservative seismic forces for high-rise buildings with long periods, as compared to those determined by other internationally accepted building codes. This paper provides observations and recommendations for code-based seismic load assessment of high-rise buildings in the Baku area.

Comparison of loads in Turkish earthquake code with those computed statistically

  • Firat, Fatih K.;Yucemen, M. Semih
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.977-994
    • /
    • 2015
  • In this study, earthquake loads are investigated statistically and compared with the nominal earthquake loads calculated according to the Turkish Earthquake Code, namely: "Specifications for Structures to be Built in Earthquake Areas". For this purpose, the "actual" mean load values estimated from statistical methods and the nominal load values computed according the Seismic Code are compared, with respect to some variations in the basic parameters, such as the importance factor, building height, site coefficient, seismic zone and seismic load reduction factor. In addition to the data compiled from different regions of Turkey, the published data and information in the foreign literature are also used in the determination of the earthquake load statistics. Although the dead and live loads acting on a structure are independent of the geographical location of the structure, environmental loads, such as earthquake loads are highly dependent on the location of the structure. Accordingly, for the assessment of statistical parameters associated with earthquake loads, twelve different locations which can represent the different seismic zones of Turkey as accurately as possible are chosen. As a result of the code calibration procedure considered in this study, it is observed that the load values obtained from the Turkish Seismic Code may overestimate or underestimate the actual seismic loads in some of the seismic zones.

지진환경과 설계기준과 호환하는 대표 입력 지진파의 생성 (Generation of Seismic Environment and Design Code Compatible Representative Earthquake Motion)

  • 정창균;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.771-776
    • /
    • 2010
  • Since the importance of seismic design is greater, dynamic analysis is more widely using than past. The input motion is one of the most important factors of dynamic analysis. However, in Korea input motions are selected from U.S. and Japan those are captured from large magnitude earthquakes without considering seismic environment or generated in frequency domain. In this research, the methodology for generating input motions those are considered seismic environment and design code is proposed. The seismic environment compatibility is considered by performing deaggregation and the design code compatibility is considered by time-domain artificial time history accelration generation method. The results shows that seismic environment and design code compatible input motions are successfully generated.

  • PDF

Performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China

  • Jiang, Huanjun;Lu, Xilin;Zhu, Jiejiang
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.545-560
    • /
    • 2012
  • Design codes provide the minimum requirements for the design of code-compliant structures to ensure the safety of the life and property. As for code-exceeding buildings, the requirements for design are not sufficient and the approval of such structures is vague. In mainland China in recent years, a large number of code-exceeding tall buildings, whether their heights exceed the limit for the respective structure type or the extent of irregularity is violated, have been constructed. Performance-based seismic design (PBSD) approach has been highly recommended and become necessary to demonstrate the performance of code-exceeding tall buildings at least equivalent to code intent of safety. This paper proposes the general methodologies of performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China. The PBSD approach proposed here includes selection of performance objectives, determination of design philosophy, establishment of design criteria for structural components and systems consistent with the desirable and transparent performance objectives, and seismic performance analysis and evaluation through extensive numerical analysis or further experimental study if necessary. The seismic analysis and design of 101-story Shanghai World Financial Center Tower is introduced as a typical engineering example where the PBSD approach is followed. The example demonstrates that the PBSD approach is an appropriate way to control efficiently the seismic damage on the structure and ensure the predictable and safe performance.

소방설비 내진설계에 관한 각국 기준 비교 연구 (Review of Code Provisions on Seismic Design of Fire Protection System)

  • 이현진;신이철;이재영;서동구;한병찬;김재환;권영진
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.238-241
    • /
    • 2008
  • In this paper, provisions related with the seismic design and equipments of fire protection system are being considered. The provisions from various international codes on seismic design fire protection system were reviewed. The codes, reviewed are, Japanese code, NFPA guideline and Korean code. It is noted that all the codes excepted to korean code consider earthquake effect to evaluate seismic forces and behaviors. But, korean provision are not covered in seismic response in all. A brief description on limitations in korean code is also presented.

  • PDF

삭도시설 강지주의 내진설계기준에 관한 검토 (A Study on Seismic Design Code of Cable-railway Culumns)

  • 김진호;한석윤;홍성모;박만호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1018-1023
    • /
    • 2008
  • Steel culumns, main members of cable-railway structure, are linked each other by cable, its structural behavior is considered as cantilever structure. Under the present cable-railway code, main design load is wind load which is only defined vertical load. But the frequency of earthquake occurrence has increased in recent days and the seismic design code is intensified, necessities of seismic design are discussed. In this study, necessities of seismic design code of cable-railway are proposed by examining the seismic response of cable-railway columns designed by KBC(Korea Building Code), by comparing structural behavior of seismic and wind.

  • PDF

Evaluation of Seismic performance of RC setback frames

  • Habibi, Alireza;Vahed, Meisam;Asadi, Keyvan
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.609-619
    • /
    • 2018
  • When the irregularities occurred in buildings, affect their seismic performance. This paper has focused on one of the types of irregularities at the height that named setback in elevation. For this purpose, several multistorey Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks were designed according to new edition of Iranian seismic code. The nonlinear time history analysis was performed to predict the seismic performance of frames subjected to seven input ground motions. The assessment of the seismic performance was done considering both global and local criteria. Results showed that the current edition of Iranian seismic code needs to be modified in order to improve the seismic behaviour of reinforced concrete moment resisting setback buildings. It was also shown that the maximum damages happen at the elements located in the vicinity of the setbacks. Therefore, it is necessary to strengthen these elements by appropriate modification of Iranian seismic code.

지진하중을 받는 원자력발전소용 냉각펌프의 내진해석 (Seismic Analysis of the Cooling Water Pump for Nuclear Power Plant for the Seismic Load)

  • 정철섭
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1239-1243
    • /
    • 2009
  • To evaluate the structural integrity of the nuclear seismic category penetration cooling water pump under the seismic service conditions the seismic analysis was performed in accordance with IEEE-STD-344 code. The finite element computer program, ANSYS, Version 10.0, is used to perform both a mode frequency analysis and an equivalent static seismic analysis of the pump assembly. The mode frequency analysis results show the fundamental natural frequency is greater than 33 Hz and does not exist in seismic range, thus justifying the use of the static analysis. The stresses resulted from various loadings and their combinations are within the allowable limits specified in the above mentioned IEEE code. The results of the seismic evaluation fully satisfied the structural acceptance criteria of the IEEE code. Accordingly the structural integrity on the pump assembly was proved.

KBC 비구조요소 내진설계 하중 (KBC Seismic Design Force for Nonstructural Element)

  • 김대곤
    • 한국공간구조학회논문집
    • /
    • 제14권1호
    • /
    • pp.77-84
    • /
    • 2014
  • Simple 3, 10, and 30-story buildings with a nonstructural element which is located at roof or near the middle of the building height are selected. Based on 2009 Korean Building Code, the seismic design force applied at the nonstructural element is evaluated. Response spectrum analysis is conducted with the design response acceleration spectrum of 2009 Korean Building Code and the analytical response is compared with the seismic design force from the Code. Furthermore, an artificial earthquake based on Korean design response acceleration spectrum and the 50% intensity of El Centro earthquake, which can be considered as the maximum future earthquake possibly occurring in Korea, are selected to conduct time history analysis. When the period of the nonstructural element is shorter than 0.06 second or longer than that of the 1st period of each building, the Code equations of seismic design force for nonstructural element seems to be appropriate. However, the period of the nonstructural element is close to the one of the building's higher mode periods including the 1st period, seismic force of the nonstructural element might exceed the Code specified seismic design force.

Nonlinear seismic performance of code designed perforated steel plate shear walls

  • Barua, Kallol;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.85-98
    • /
    • 2019
  • Nonlinear seismic performances of code designed Perforated Steel Plate Shear Walls (P-SPSW) were studied. Three multi-storey (4-, 8-, and 12-storey) P-SPSWs were designed according to Canadian seismic provisions and their performance was evaluated using time history analysis for ground motions compatible with Vancouver response spectrum. The selected code designed P-SPSWs exhibited excellent seismic performance with high ductility and strength. The current code equation was found to provide a good estimation of the shear strength of the perforated infill plate, especially when the infill plate is yielded. The applicability of the strip model, originally proposed for solid infill plate, was also evaluated for P-SPSW and two different strip models were studied. It was observed that the strip model with strip widths equal to center to center diagonal distance between each perforation line could reasonably predict the inelastic behavior of unstiffened P-SPSWs. The strip model slightly underestimated the initial stiffness; however, the ultimate strength was predicted well. Furthermore, applicability of simple shear-flexure beam model for determination of fundamental periods of P-SPSWs was studied.