• 제목/요약/키워드: Seismic building Code

검색결과 272건 처리시간 0.033초

반응수정계수의 영향에 따른 철골조 빌딩의 내진 성능 평가 (Performance Evaluation of Steel Moment Frame Buildings with Different Response Modification Factors)

  • 이기학
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2006
  • This study lotuses on the seismic behavior of 3-, 9-, and 20-story steel moment resisting frame (MRF) structures designed in accordance with the 2000 International Building Code using different Response Modification factors (R factors) 8, 9, 10, 11, and 12. For a detailed case study, 30 different structures were evaluated for twenty ground motions representing the hazard level which is equal to a 2% probability exceeding in 50 years (2% in 50 years). The results showed that the current R factors provide conservative designs for the 3- and 9-story buildings for the Collapse Prevention performance objective. However, the 20-story buildings designed without using the minimum requirement of spectral acceleration CS prescribed in the IBC 2000 did not satisfy the seismic performance for Collapse Prevention performance.

  • PDF

The effect of infill walls on the fundamental period of steel frames by considering soil-structure interaction

  • Kianoosh Kiani;Sayed Mohammad Motovali Emami
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.417-431
    • /
    • 2024
  • The fundamental period of vibration is one of the most critical parameters in the analysis and design of structures, as it depends on the distribution of stiffness and mass within the structure. Therefore, building codes propose empirical equations based on the observed periods of actual buildings during seismic events and ambient vibration tests. However, despite the fact that infill walls increase the stiffness and mass of the structure, causing significant changes in the fundamental period, most of these equations do not account for the presence of infills walls in the structure. Typically, these equations are dependent on both the structural system type and building height. The different values between the empirical and analytical periods are due to the elimination of non-structural effects in the analytical methods. Therefore, the presence of non-structural elements, such as infill panels, should be carefully considered. Another critical factor influencing the fundamental period is the effect of Soil-Structure Interaction (SSI). Most seismic building design codes generally consider SSI to be beneficial to the structural system under seismic loading, as it increases the fundamental period and leads to higher damping of the system. Recent case studies and postseismic observations suggest that SSI can have detrimental effects, and neglecting its impact could lead to unsafe design, especially for structures located on soft soil. The current research focuses on investigating the effect of infill panels on the fundamental period of moment-resisting and eccentrically braced steel frames while considering the influence of soil-structure interaction. To achieve this, the effects of building height, infill wall stiffness, infill openings and soil structure interactions were studied using 3, 6, 9, 12, 15 and 18-story 3-D frames. These frames were modeled and analyzed using SeismoStruct software. The calculated values of the fundamental period were then compared with those obtained from the proposed equation in the seismic code. The results indicate that changing the number of stories and the soil type significantly affects the fundamental period of structures. Moreover, as the percentage of infill openings increases, the fundamental period of the structure increases almost linearly. Additionally, soil-structure interaction strongly affects the fundamental periods of structures, especially for more flexible soils. This effect is more pronounced when the infill wall stiffness is higher. In conclusion, new equations are proposed for predicting the fundamental periods of Moment Resisting Frame (MRF) and Eccentrically Braced Frame (EBF) buildings. These equations are functions of various parameters, including building height, modulus of elasticity, infill wall thickness, infill wall percentage, and soil types.

국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (I) - 국내 내진설계기준의 문제점 분석 (Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (I) - Problem Statements of the Current Seismic Design Code)

  • 윤종구;김동수;방은석
    • 한국지진공학회논문집
    • /
    • 제10권2호
    • /
    • pp.39-50
    • /
    • 2006
  • 본 논문에서는 국내 162개 지반에 대한 전단파속도 주상도, 기반암 깊이 및 지반의 동적변형특성을 획득하여 등가선형해석을 수행한 후 미국 서부해안지역의 지반 특성과 비교 검토하였다. 검토 결과 국내의 일반적인 특성을 가지는 지반과 미국 서부해안지역의 지반은 기반암 깊이와 고유주기가 매우 다름을 확인하였다. 지진응답 해석 결과 단주기 증폭계수 $F_a$의 경우 1997 UBC 기준의 값보다 크게 산정되었고, 장주기 증폭계수 $F_v$는 작게 나타나 국내 지반특성에 적합한 증폭계수는 현재 국내 내진설계기준 값과는 매우 다른 경향을 보였다. 따라서, 증폭계수를 재산정하고 설계응답스펙트럼을 개선해야 할 필요성을 확인하였다. 본 논문에서는 현재 이용되고 있는 내진설계기준과 국내 지반특성과의 차이점 파악에 중점을 두었고, 개선방법에 대한 내용은 동반논문(II 지반분류 개선방법, III 설계응답스펙트럼 개선방법)에서 심도있게 논의하였다.

Performance based assessment for existing residential buildings in Lake Van basin and seismicity of the region

  • Isik, Ercan;Kutanis, Mustafa
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.893-910
    • /
    • 2015
  • Earthquake safety of existing buildings has gained considerable importance after earthquakes which have occurred in our country especially in the last 30 years. Performance based assessment methods have been widely used for existing reinforced concrete structures. This study aims to investigate the earthquake performances of the building stock located in Van Lake basin in Eastern Anatolia of Turkey. The case study of buildings has been modeled on and the structural performances have been determined by employing the non-linear methods described in the latest Turkish Earthquake Code published in 2007. The Van lake basin is located on the very seismically active in a region. On October 23, 2011, a magnitude of Mw 7.2 earthquake struck the Van province in eastern Turkey. The earthquake ground motion was recorded as about 0.1g in Bitlis province. Performance evaluations have been performed by taking samples from each district consisting urban building stocks of Bitlis. A total of 16 reinforced concrete buildings have been evaluated. Among them, 53% of those buildings were determined in the Fully Operational performance level; 13% of them in the Life Safety performance and 34% of them could not be evaluated because of the ratio of the effective mass of first mode to the total mass of the buildings was smaller than 0.70. Therefore, incremental equivalent seismic load methods, which are a part of Turkish Earthquake Code -2007, cannot be used.

Evaluating the reliability of using the deflection amplification factor to estimate design displacements with accidental torsion effects

  • Lin, Jui-Liang;Wang, Wei-Chun;Tsai, Keh-Chyuan
    • Earthquakes and Structures
    • /
    • 제8권2호
    • /
    • pp.443-462
    • /
    • 2015
  • Some model building codes stipulate that the design displacement of a building can be computed using the elastic static analysis results multiplied by the deflection amplification factor, $C_d$. This approach for estimating the design displacement is essential and appealing in structural engineering practice when nonlinear response history analysis (NRHA) is not required. Furthermore, building codes stipulate the consideration of accidental torsion effects using accidental eccentricity, whether the buildings are symmetric-plan, or asymmetric-plan. In some model building codes, the accidental eccentricity is further amplified by the torsional amplification factor $A_x$ in order to minimize the discrepancy between statically and dynamically estimated responses. Therefore, this warrants exploration of the reliability of statically estimated design displacements in accordance with the building code requirements. This study uses the discrepancy curves as a way of assessing the reliability of the design displacement estimates resulting from the factors $C_d$ and $A_x$. The discrepancy curves show the exceedance probabilities of the differences between the statically estimated design displacements and NRHA results. The discrepancy curves of 3-story, 9-story, and 20-story example buildings are investigated in this study. The example buildings are steel special moment frames with frequency ratios equal to 0.7, 1.0, 1.3, and 1.6, as well as existing eccentricity ratios ranging from 0% to 30%.

지역특성을 반영한 지진손실평가 (Earthquake Loss Estimation Including Regional Characteristics)

  • 김준형;홍윤수;유은종
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.311-320
    • /
    • 2023
  • When an earthquake occurs, the severity of damage is determined by natural factors such as the magnitude of the earthquake, the epicenter distance, soil properties, and type of the structures in the affected area, as well as the socio-economic factors such as the population, disaster prevention measures, and economic power of the community. This study evaluated the direct economic loss due to building damage and the community's recovery ability. Building damage was estimated using fragility functions due to the design earthquake by the seismic design code. The usage of the building was determined from the information in the building registrar. Direct economic loss was evaluated using the standard unit price and estimated building damage. The standard unit price was obtained from the Korean Real Estate Board. The community's recovery capacity was calculated using nine indicators selected from regional statistical data. After appropriate normalization and factor analysis, the recovery ability score was calculated through relative evaluation with neighboring cities.

비구조요소의 내진 설계를 위한 기존 층응답스펙트럼의 평가 (A Study on Evaluation of Floor Response Spectrum for Seismic Design of Non-Structural Components)

  • 최경석;이원호;양원직;김형준
    • 한국지진공학회논문집
    • /
    • 제17권6호
    • /
    • pp.279-291
    • /
    • 2013
  • The seismic damage of non-structural components, such as communication facilities, causes direct economic losses as well as indirect losses which result from social chaos occurring with downtime of communication and financial management network systems. The current Korean seismic code, KBC2009, prescribes the design criteria and requirements of non-structural components based on their elastic response. However, it is difficult for KBC to reflect the dynamic characteristics of structures where non-structural components exist. In this study, both linear and nonlinear time history analyses of structures with various analysis parameters were carried out and floor acceleration spectra obtained from analyses were compared with both ground acceleration spectra used for input records of the analyses and the design floor acceleration spectrum proposed by National Radio Research Agency. Also, this study investigates to find out the influence of structural dynamic characteristics on the floor acceleration spectra. The analysis results show that the acceleration amplification is observed due to the resonance phenomenon and such amplification increases with the increase of building heights and with the decrease of structure's energy dissipation capacities.

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

NYCDOT2008 기준을 이용한 국내 지반의 지반분류방법 결정 (Determination of Site Classification Method in the Korean Peninsula Based On NYCDOT2008(2008 New York City DOT Seismic Design Guidelines))

  • 강호덕;김기상;선창국;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.777-784
    • /
    • 2010
  • In the current Korean seismic design guide, the site classification and the corresponding site coefficients were determined based on the UBC-1997 (Uniform Building Code). In order to develop the current site classification system, it is important to compare the local site conditions in Korea to other countries which have similar seismic design guides. In the eastern United States, New York City(40degrees 45minutes north latitude, 73degrees 59minutes west longitude) suggested that current design guidelines are unsuitable to shallow bedrock depth sites. So the 3-parameter methods are performed for new criteria in New York City. In this study, site response analyses were performed at 181 study sites using one-dimensional equivalent linear to evaluate the site-specific earthquake ground motions at inland areas in the Korean peninsula and reclassify the results according to similar ground motions using the 3-parameter methods. It is effective that multi-parameter methods for Korean site characteristics in comparison with single parameter method.

  • PDF

Implementation of a macro model to predict seismic response of RC structural walls

  • Fischinger, Matej;Isakovic, Tatjana;Kante, Peter
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.211-226
    • /
    • 2004
  • A relatively simple multiple-vertical-line-element macro model has been incorporated into a standard computer code DRAIN-2D. It was used in blind predictions of seismic response of cantilever RC walls subjected to a series of consequent earthquakes on a shaking table. The model was able to predict predominantly flexural response with relative success. It was able to predict the stiffness and the strength of the pre-cracked specimen and time-history response of the highly nonlinear wall as well as to simulate the shift of the neutral axis and corresponding varying axial force in the cantilever wall. However, failing to identify the rupture of some brittle reinforcement in the third test, the model was not able to predict post-critical, near collapse behaviour during the subsequent response to two stronger earthquakes. The analysed macro model seems to be appropriate for global analyses of complex building structures with RC structural walls subjected to moderate/strong earthquakes. However, it cannot, by definition, be used in refined research analyses monitoring local behaviour in the post critical region.