• Title/Summary/Keyword: Seismic analysis methods

Search Result 564, Processing Time 0.024 seconds

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

One-Dimensional Consolidation Simulation of Kaolinte using Geotechnical Online Testing Method (온라인 실험을 이용한 카올리나이트 점토의 일차원 압밀 시뮬레이션)

  • Kwon, Youngcheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.247-254
    • /
    • 2006
  • Online testing method is one of the numerical experiment methods using experimental information for a numerical analysis directly. The method has an advantage in that analysis can be conducted without using an idealized mechanical model, because mechanical properties are updated from element test for a numerical analysis in real time. The online testing method has mainly been used for the geotechnical seismic engineering, whose major target is sand. A testing method that may be applied to a consolidation problem has recently been developed and laboratory and field verifications have been tried. Although related research thus far has mainly used a method to update average reaction for a numerical analysis by positioning an element tests at the center of a consolidation layer, a weakness that accuracy of the analysis can be impaired as the thickness of the consolidation layer becomes more thicker has been pointed out regarding the method. To clarify the effectiveness and possible analysis scope of the online testing method in relation to the consolidation problem, we need to review the results by applying experiment conditions that may completely exclude such a factor. This research reviewed the results of the online consolidation test in terms of reproduction of the consolidation settlement and the dissipation of excess pore water pressure of a clay specimen by comparing the results of an online consolidation test and a separated-type consolidation test carried out under the same conditions. As a result, the online consolidation test reproduced the change of compressibility according effective stress of clay without a huge contradiction. In terms of the dissipation rate of excess pore water pressure, however, the online consolidation test was a little faster. In conclusion, experiment procedure needs to improve in a direction that hydraulic conductivity can be updated in real time so as to more precisely predict the dissipation of excess pore water pressure. Further research or improvement should be carried out with regard to the consolidation settlement after the end of the dissipation of excess pore water pressure.

Estimation of Dynamic Material Properties for Fill Dam : II. Nonlinear Deformation Characteristics (필댐 제체 재료의 동적 물성치 평가 : II. 비선형 동적 변형특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Choo, Hyek-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.87-105
    • /
    • 2009
  • Nonlinear dynamic deformation characteristics, expressed in terms of normalized shear modulus reduction curve (G/$G_{max}-\log\gamma$, G/$G_{max}$ curve) and damping curve (D-$\log\gamma$), are important input parameters with shear wave velocity profile ($V_s$-profile) in the seismic analysis of (new or existing) fill dam. In this paper, the reasonable and economical methods to evaluate the nonlinear dynamic deformation characteristics for core zone and rockfill zone respectively are presented. For the core zone, 111 G/$G_{max}$ curves and 98 damping curves which meet the requirements of core material were compiled and representative curves and ranges were proposed for the three ranges of confining pressure (0~100 kPa, 100 kPa~200 kPa, more than 200 kPa). The reliability of the proposed curves for the core zone were verified by comparing with the resonant column test results of two kinds of core materials. For the rockfill zone, 135 G/$G_{max}$ curves and 65 damping curves were compiled from the test results of gravelly materials using large scale testing equipments. The representative curves and ranges for G/$G_{max}$ were proposed for the three ranges of confining pressure (0~50 kPa, 50 kPa~100 kPa, more than 100 kPa) and those for damping were proposed independently of confining pressure. The reliability of the proposed curves for the rockfill zone were verified by comparing with the large scale triaxial test results of rockfill materials in the B-dam which is being constructed.

Analysis of Crustal Velocity Structure Beneath Gangwon Province, South Korea, Using Joint Inversion of Receiver Functions and Surface Wave Dispersion (수신함수와 표면파 분산의 연합 역산을 사용한 강원도 지역 하부의 지각속도구조 분석)

  • Jeong-Yeon Hwang;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.277-291
    • /
    • 2023
  • To analyze the crustal velocity structures beneath 21 broadband seismic stations in Gangwon Province, South Korea, we first applied the H-κ stacking method to 139 teleseismic event data (Mw ≥ 5.8 and the epicentral distance of 30° - 90°) occurring between March 18, 2019 and December 31, 2022 to estimate the Moho depths and Vp/Vs ratios beneath each station. The Moho depths and Vp/Vs ratios from the H-κ stacking method range from 24.9 to 33.2 km depth and 1.695 - 1.760, respectively, and the estimated Vp/Vs ratios were applied to the joint inversion of receiver functions and surface wave dispersion to obtain 1-D crustal velocity models beneath each station. The resulting Moho depths range from 25.9 to 33.7 km depth, similar to the results from the H-κ stacking method. Moho depth results from the both methods are generally consistent with Airy's isostasy. The 1-D crustal velocity models confirm that the existence of 2 km thick low-velocity layers with P-wave velocities of 5 km/s or less at some stations in the Taebaeksan basin, and at the stations CHNB and GAPB in northern Gangwon Province, which are located above the Cenozoic sedimentary layer. The station SH2B, although not overlying a sedimentary layer, has a low P-wave velocity near the surface, which is probably due to various factors such as weathering of the bedrock. We also observe a velocity inversion with decreasing velocity with depth at all stations within 4 - 12 km depths, and mid-crustal discontinuities possibly due to density differences in the rocks at around 10 km depth below some stations.