• Title/Summary/Keyword: Seismic analysis

Search Result 4,148, Processing Time 0.025 seconds

Response Analysis of RC Bridge Piers due In Multiple Earthquakes (연속지진하중에 의한 철근콘크리트 교량 교각의 응답해석)

  • Lee Do-Hyung;Jeon Jong-Su;Park Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.357-367
    • /
    • 2004
  • In this paper, the effect of cumulative damage for reinforced concrete bridge piers subjected to both single and multiple earthquakes is investigated. For this purpose, selected are three set of accelerograms one of which represents the real successive input ground motions, recorded at the same station with three months time interval. The analytical predictions indicate that piers are in general subjected to a large number of inelastic cycles and increased ductility demand due to multiple earthquakes, and hence more damage in terms of stiffness degradation is expected to occur. In addition, displacement ductility demand demonstrates that inelastic seismic response of piers can significantly be affected by the applied input ground motion characteristics. Also evaluated is the effect of multiple earthquakes on the response with shear. Comparative studies between the cases with and without shear indicate that stiffness degradation and hence reduction in energy dissipation capacity of piers are pronounced due to the multiple earthquakes combined with shear. It is thus concluded that the effect of multiple earthquakes should be taken into account for the stability assessment of reinforced concrete bridge piers.

Soil Water Content Measurement Technology Using Hyperspectral Visible and Near-Infrared Imaging Technique (초분광 근적외선 영상 기술을 이용한 흙의 함수비 측정 기술)

  • Lim, Hwan-Hui;Cheon, Enok;Lee, Deuk-Hwan;Jeon, Jun-Seo;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.51-62
    • /
    • 2019
  • In this study, a simple method to estimate the soil water content variation in a wide area was proposed using hyperspectral near-infrared images. The reflectance data of a sand, granite soils, and a kaolinite were measured by reflecting the soil samples with different wavelengths in the visible and near-infrared (VNIR) regions using hyperspectral cameras. The measured reflectances and parameters were used to build a water content prediction model using the Partial Least Square Regression (PLSR) analysis. In the water content prediction model, the Area of Reflectance (Near-infrared, NIR) parameter was the most suitable parameter to determine the water content. The parameter was applicable regardless of the soil type, as the coefficient of determination (R2) exceeded 0.9 for each soil sample. Additionally, the mean absolute percentage error (MAPE) was less than 15% when compared with the actual water content of the soil. Therefore, the predictability of water content variation for soils with water content lower than 50% was confirmed. Accordingly through this study, the predictability of water content variation in several soil types using the hyperspectral near-infrared images was confirmed. For further development, a model that incorporates soil classification would be required to improve the accuracy of the model and to predict higher range of water contents.

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

The Limiting Drift and Energy Dissipation Ratio for Shear Walls Based on Structural Testing (전단벽의 최소 층변위 및 에너지 소산성능)

  • ;;N.M.Hawins
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.335-343
    • /
    • 1998
  • Recently, new experimental criteria for reinforced concrete frame structures in high seismic regions have been reported in United States. The objective of the criteria is to get more reliable test data which are valid to compare with other test data done by different researchers. The criteria precribe test method of specimens, analysis method of test data, and limiting values needed to specimens like drift angle, energey dissipation ratio, stiffness, and strength. These criteria might be usefel to get objective conclusion. Shear wall structures, which belong to one of earthquake resisting systems, also need this kind of criteria. But, the general response of shear wall structures is a little bit different from that of frame structures since shear wall restrains the horizontal displacement caused by horizontal force and increases the stiffness and strength. The objective of this paper is to propose a criterion for limiting drift and energy dissipation ratio of shear walls based on structural testing. These are the most important values for presenting the capacity of shear walls. Limiting drift and energy dissipation ratios were examined for tests on shear walls having ductile type failures. Test data were analyzed and compared to the results for a suggested acceptance criteria that involve a limiting drift that is a function of aspect ratio and a limiting energy dissipation ratio that is a function of displacement ductility and damping.

Relationships between Gas Hydrate Occurrence Types and Sediment Characteristics in the Ulleung Basin, East Sea (동해 울릉분지의 가스 하이드레이트 산출형태와 퇴적물 특성의 관계)

  • Kim, Dae-Ha;Bahk, Jang-Jun;Lee, Jin-Heuck;Ryu, Byong-Jae;Kim, Ji-Hoon;Chun, Jong-Hwa;Torres, Marta E.;Chang, Chan-Dong
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.397-406
    • /
    • 2012
  • During the 2nd Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) in 2010, gas-hydrate-bearing sediment cores were recovered at 10 drill sites. Base, on Infrared (IR) thermal image and grain-size analysis of the cores, three distinct types of gas hydrate are classified: Type I (fracture-filling in mud layers), Type II (disseminated in mud layers), and Type III (pore-filling in sand layers). Types I and II gas hydrates occur in mud as discrete veins, nodules or disseminated particles. Type III fills the pore spaces of the sand layers encased in mud layers. In this case, the sand content of hosting sediments shows a general linear relationship with gas hydrate saturation. The degrees of temperature anomalies (${\Delta}T$) from IR images generally increase with gas hydrate saturation regardless of gas hydrate occurrence types. Type I is dominantly found in the sites where seismic profiles delineate chimney structures, whereas Type II where the drill cores are composed almost of mud layers. Type III was mainly recovered from the sites where hemipelagic muds are frequently intercalated with turbidite sand layers. Our results indicate that gas hydrate occurrence is closely related to sedimentological characteristic of gas hydrate-bearing sediments, that is, grain size distribution.

Introduction to Geophysical Exploration Data Denoising using Deep Learning (심층 학습을 이용한 물리탐사 자료 잡음 제거 기술 소개)

  • Caesary, Desy;Cho, AHyun;Yu, Huieun;Joung, Inseok;Song, Seo Young;Cho, Sung Oh;Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.117-130
    • /
    • 2020
  • Noises can distort acquired geophysical data, leading to their misinterpretation. Potential noises sources include anthropogenic activity, natural phenomena, and instrument noises. Conventional denoising methods such as wavelet transform and filtering techniques, are based on subjective human investigation, which is computationally inefficient and time-consuming. Recently, many researchers attempted to implement neural networks to efficiently remove noise from geophysical data. This study aims to review and analyze different types of neural networks, such as artificial neural networks, convolutional neural networks, autoencoders, residual networks, and wavelet neural networks, which are implemented to remove different types of noises including seismic, transient electromagnetic, ground-penetrating radar, and magnetotelluric surveys. The review analyzes and summarizes the key challenges in the removal of noise from geophysical data using neural network, while proposes and explains solutions to the challenges. The analysis support that the advancement in neural networks can be powerful denoising tools for geophysical data.

Dynamic Deformation Properties of Coarse Granular Materials with Respect to Gradation Characteristics (조립재료의 입도특성에 따른 동적 변형특성 평가)

  • Ha, Ik-Soo;Kim, Nam-Ryong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.5-14
    • /
    • 2013
  • Coarse granular geomaterials containing large gravels are broadly used for construction of large geotechnical systems such as dams, levees, railways and backfills. It is necessary to evaluate deformation characteristics of these materials for dynamic analysis, e.g. seismic design. This study presents evaluation of dynamic deformation characteristics of coarse materials using large scale resonant column testing apparatus, which uses specimens with 200 mm in diameter and 400 mm in height, and the effects of gradation characteristics on maximum shear modulus, shear modulus reduction curve and damping characteristics were investigated. From experimental study using rock-fill materials for a dam, we could see that the largest or mean particle size affects the shape of shear modulus reduction curve. When the specimens are prepared under the same conditions for maximum particle size, the coefficient of uniformity affects the confining stress exponent of maximum shear modulus. It could be concluded that the maximum particle size is an factor which affects shear modulus reduction curve, and that the coefficient of uniformity is for small strain shear modulus, especially for the sensitivity to confining stress.

Application of the SASW Method to the Evaluation of Grouting Performance for a Soft Ground of a Tunnel (터널 원지반의 그라우팅 보강 평가를 위한 SASW 기법의 적용)

  • 조미라;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.273-283
    • /
    • 2003
  • Fissured rock and soft ground always suggest, problems in the construction of the underground space. The stress release of the weak underground material by opening the underground space with a soft ground, fissures and joints can lead to the failure of the opening. Grouting of the weak rock and the soft ground, which is a process of injecting some bonding agents into the soft ground, is one of the measures to reinforce the soft ground and to prohibit the failure of the underground construction due to the stress release. The proper installation of the grouting is essential to ensuring the safety of the tunneling operation, so that the evaluation of the grouting performance is very significant. The general procedure of evaluating the grouting is coring the grouted section and measuring the compression strength of the core. However, sometimes when the grouted section is at the crown of the tunnel and the grouting is installed at a wide section, the coring is not good enough. This study is oriented to propose a new and a non-destructive procedure of evaluating the grouting performance. The proposed method is based on the wave propagation of elastic waves, and evaluates the shear stiffness of the ground and investigates the anomalies such as voids and cracks. The SASW ( Spectral-Analysis-of-Surface-Waves) method is one of the candidate s to make the inspection of the pouting performance, and is adopted in this study. The practical grouting activity was monitored by SASW method, and the proposed method was applied to the inspection of the grouting performance to check the verification of the proposed method.

Analysis of Subsurface Geological Structures and Geohazard Pertinent to Fault-damage in the Busan Metropolitan City (부산시 도심지의 지하 지질구조와 단층손상과 관련된 지질위험도 분석)

  • Son, Moon;Lee, Son-Kap;Kim, Jong-Sun;Kim, In-Soo;Lee, Kun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.87-101
    • /
    • 2007
  • A variety of informations obtained from satellite image, digital elevation relief map (DEM), borehole logging, televiewer, geophysical prospecting, etc were synthetically analyzed to investigate subsurface geological and structural characteristics and to evaluate geohazard pertinent to fault-damage in the Busan metropolitan city. It is revealed that the geology is composed of the Cretaceous andesitic$\sim$dacitic volcanics, gabbro, and granitoid and that at least three major faults including the Dongrae fault are developed in the study area. Based on characteristics of topography, fault-fractured zone, and isobath maps of the Quaternary sediments and weathered residuals of the basement, the Dongrae fault is decreased in its width and fracturing intensity of damaged zone from south toward north, and the fault is segmented around the area between the Seomyeon and Yangieong junctions. Meanwhile, we drew a geohazard sectional map using the five major parameters that significantly suggest damage intensity of basement by fault, i.e. distance from fault core, TCR, RQD, uniaxial rock strength, and seismic velocity of S wave. The map is evaluated as a suitable method to express the geological and structural characteristics and fault-damaged intensity of basement in the study area. It is, thus, concluded that the proposed method can contribute to complement and amplify the capability of the present evaluation system of rock mass.

Evaluation of the Stability of Quay Wall under the Earthquake and Tsunami (지진 및 지진해일파 작용하의 해안안벽의 안정성평가)

  • Lee, Kwang-Ho;Ha, Sun-Wook;Lee, Kui-Seop;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.41-54
    • /
    • 2011
  • The present study analyzes the stability of waterfront quay wall under the combined action of earthquake and tsunami. Adopting the limit equilibrium method, the stability of waterfront quay wall is checked for both the sliding and overturning. Forces due to tsunami are compared with the proposed formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D). Variations of the stability of wall are also proposed by the parametric study including tsunami water height, horizontal seismic acceleration coefficient, internal friction angle of soil, friction angle between the wall and the soil and the pore water pressure ratio. The present study about the stability of wall is also compared with the case when earthquake and tsunami are not considered. As a result, the result of numerical analysis about the tsunami force is similar to that of proposed formula. When earthquake and tsunami are simultaneously considered, the stability of wall in passive case significantly decreases and tsunami forces in active case are affected as a resistance force on the wall and so the stability of wall increases.