• 제목/요약/키워드: Seismic Resistant Method

검색결과 108건 처리시간 0.03초

Design for earthquake-resistant short RC structural walls

  • Zygouris, Nick St.;Kotsovos, Gerasimos M.;Kotsovos, Michael D.
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.713-732
    • /
    • 2015
  • The application of the compressive force path method for the design of earthquake-resistant reinforced concrete structural walls with a shear span-to-depth ratio larger than 2.5 has been shown by experiment to lead to a significant reduction of the code specified transverse reinforcement within the critical lengths without compromising the code requirements for structural performance. The present work complements these findings with experimental results obtained from tests on structural walls with a shear span-to-depth ratio smaller than 2.5. The results show that the compressive force path method is capable of safeguarding the code performance requirements without the need of transverse reinforcement confining concrete within the critical lengths. Moreover, it is shown that ductility can be considerably increased by improving the strength of the two bottom edges of the walls through the use of structural steel elements extending to a small distance of the order of 100 mm from the wall base.

감쇠시스템을 적용한 라멘조 아파트의 내진성능평가 (Seismic Performance of the Framed Apartment Building Structure with Damping System)

  • 천영수;이범식;박지영
    • 토지주택연구
    • /
    • 제8권3호
    • /
    • pp.181-187
    • /
    • 2017
  • To proactively respond to internal and external changes such as the recent demographic change and rising demand for diversified housing types, this study investigated the framed-structure free plan public house model proposed by the LH to look at the seismic performance of framed-structure apartment according to damper system use through non-linear analysis. The effectiveness thereof was also examined in terms of performance and economy. As a result, the proposed damper system application method to framed-structure free plan public house model was found to meet the performance requirements of the present earthquake-resistant design (KBC2016) and effective to apply to designs. The max response displacement and max response acceleration were compared based on the nonlinear analysis. As a result, the building with damper system showed better earthquake resistance performance than earthquake-resistant structure thanks to the damper system, although the base shear of earthquake-resistant system was reduced by 20% in design. The damper system is expected to help reduce building damage while ensuring excellent earthquake resistance performance. In addition, the framework quantities of earthquake-resistant structure and structure with damping system were compared. As a result, columns were found to reduce concrete amount by about 3.9% and rebar, by about 7.3%. Walls showed about 12.6% reduction in concrete and about 10.7% in rebar. In terms of cost, framework construction cost including formwork and foundation expenses was expected to drop by about 5~6%.

L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 휨 거동 분석 (Analysis on the Flexural Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel)

  • 유승룡;주호성;손국원
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.52-62
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

반복하중을 받는 철근콘크리트 골조 및 보강시스템의 내진성능 평가 및 개선 (Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Frame and Braced System under Load Reversals)

  • 김광연;하기주;신종학;이상목;이영범;조용태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.109-114
    • /
    • 2000
  • Recently, it is required to improve the structural performance, such as durability and earthquake resistant capacity due to the deterioration of structural components in the existing reinforced concrete building with the old aging and transition of design code. Therefore, the new technology should be developed, such as seismic retrofit and improvement of structural performance in the existing reinforced concrete building. This analytical study was performed to verify the effects of basic and reinforcing system in the reinforced concrete building. The analytical results by nonlinear finite element method were compared with the experimental results and the comparisons are judged to be good.

  • PDF

중약진지역에 위치한 콘크리트교량의 수정내진 설계 (Modified Earthquake resistant design for a concrete bridge in the Low to moderated seismic Region)

  • 국승규
    • 한국지진공학회논문집
    • /
    • 제4권3호
    • /
    • pp.11-21
    • /
    • 2000
  • 구조물에 내진설계를 적용하는 목적은 지진에 노출되는 구조물에 안전성과 경제성을 고려한 파괴메카니즘을 부여하는 것이다. 내진설계에 보편적으로 적용하고 있는 응답스펙트럼해석법은 선형해석법으로 구조물의 비선형 동적거동에 의한 영향은 특정 계수로 반영한다. 그러나 기존의 내진설계시방서들이 강진지역에 있는 나라들에 의해 제정 및 개정되어 왔기 때문에 응답스펙트럼 해석법 뿐만 아니라 기타의 적용규정이 강진지역에 위치한 구조물의 상황만을 고려하여 제시되었다. 따라서 중약진지역에 위치한 구조물의 내진설계에 대한 별도의 연구가 요구되고 있다. 이 연구에서는 중약진지역에 위치한 콘크리트 교량을 선정하여 비선형 동적거동을 반영하는 계수를 결정하고 응답스펙트럼 해석법을 적용하였다. 연구 결과 바탕으로 중약진지역의 교량에 대해 내진설계의 목적을 만족하는 개선된 내진설계 절차를 제시하였다.

  • PDF

성능스펙트럼법을 이용한 기존 학교 건축물의 내진성능평가 및 보강효과 검증 (An Evaluation of Seismic Performance for Existing School Building Using Capacity Spectrum Method)

  • 장정현;황지훈;양경석;;최재혁
    • 공학기술논문지
    • /
    • 제5권1호
    • /
    • pp.11-18
    • /
    • 2012
  • Large scale earthquake was occurred in different parts of the world like Japan (in 1995), Republic of Pakistan (2005), in China (2008) etc and enormous structures were damaged. As a result of collapse of school buildings structures numerous students are died and it had a big impact on the international community. Therefore, the interest of preparing the seismic resistant school building structures in our country is increases as school building are used as emergency shelter for local residents. But the current standard of seismic design ratio of 3.7% is applied for school building in Korea which is only significant earthquake damage is expected. In order to overcome the current situation, seismic performance evaluation is carried out for the existing school building and an accurate and appropriate seismic retrofit is required based on performance evaluation to upgrade the existing school buildings. In this paper, nonlinear analysis on existing school buildings for ATC-40(Applied Technology Council, ATC) and FEMA-356(Federal Emergency Management Agency, FEMA) are carried out using the capacity spectrum method to evaluate seismic performance and to determine the need for retrofitting. In addition, after reinforcement to enhance the seismic performance is applied the seismic performance evaluation is carried out to verify the effectiveness of seismic retrofit.

고감쇠 고무와 강재를 사용한 이중감쇠 제진시스템의 내진성능 (Seismic Performance of Dual Damper System Using High Damping Rubber and Steel)

  • 김정욱;김동건
    • 대한건축학회연합논문집
    • /
    • 제21권1호
    • /
    • pp.185-192
    • /
    • 2019
  • Recently, the frequency and magnitude of earthquakes are increasing worldwide. In Korea, the Gyeongju earthquake (2016) and the Pohang earthquake (2017) caused structural damage to many buildings. Since Korea's seismic design standards were revised to three or more stories in 2005, five-story buildings built before the revision are not designed to be earthquake-resistant. In this situation, if strong earthquake occurs in Korea, there will be great damage. To prevent this, seismic retrofit of buildings should be necessary. The seismic retrofit of classical method is mainly used to reduce the displacement generated in the structure by strengthening stiffness and strength. However, since this method increases the base shear force of the structure, it is difficult to apply it to buildings which have weak foundation. Therefore, in this study, we propose the damper system that reduces the response displacement of buildings and suppresses the increase of base shear force by using high damping rubber and steel. And the seismic performance of the damper system is verified through the experiment and the seismic analysis of the structure.

국내외 교육시설물 내진보강공법 가이드라인 비교분석 기초연구 (A Basic Study on Comparison Analysis of Seismic Reinforcement Method Guideline between Domestic and Foreign Educational Facilities)

  • 이주형;전상섭;손기영;손승현;나영주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.85-86
    • /
    • 2019
  • Recently, the educational facilities were 45% among total damaged facilities from the Po-Hang earthquake. Consequently, the seismic reinforcement of existing educational facilities were ended up attracting people's interesting. However, research is insufficient to consider that how far technology has been developed. Therefore, the purpose of this study is to investigate the level of domestic guideline research by comparing to foreign guidelines in regard to seismic reinforcement methods applicable to existing educational facilities. To achieve the objective, first, the current status of seismic reinforcement projects in domestic educational facilities was analyzed. Second, the domestic and foreign seismic reinforcement methods guidelines for structural, non-structural was compared. Third, the improvement directions for future guidelines were suggested. As a results, the improvement directions of domestic seismic reinforcement methods guidelines were proposed. First, the structural seismic reinforcement strategy needs to be segmented. Second, it is necessary to analyze about non-structural guidelines based on additional cases. In the future, this study can be used as a basic material for developing seismic reinforcement methods guidelines in domestic existing educational facilities.

  • PDF

비보강 조적조 건축물의 외부 보강에 따른 내진성능 연구 (A Study on Seismic Performance of External Reinforcement for Unreinforced Masonry Buildings)

  • 김종연;강종
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권2호
    • /
    • pp.43-52
    • /
    • 2024
  • 내진설계 되지 아니한 조적조 건축물의 내진성능을 평가하고 건축물의 외부에 내진 보강 공법을 채택하여 내진성능을 향상시키고자 하였다. 내진성능을 평가하기 위해 건축물 내진설계 기준 및 해설(KDS 41 17 00 : 2019)과 기존 시설물(건축물) 내진성능 평가요령을 적용하였으며 비선형 정적해석으로 pushover해석을 수행하였다. 해석결과, 우리나라 주택의 내진설계 보급 비율이 낮고 주택의 많은 비중을 차지하고 있는 것이 조적조 건축물임을 고려하면 내진보강이 시급한 것으로 판단되었다. 조적조 건축물에 철골 보-기등+가새 프레임을 보강할 경우 층간 변형각은 X방향 0.043%이며 Y방향 0.047%로 나타나 규정을 만족하였다. 성능 수준별 중력하중 저항능력은 X, Y방향 모두 거주가능으로 판정되어 안전한 것으로 판단되었다. 건축물의 외부에 보강함으로써 주택의 거주성과 편의성을 확보하면서 공사가 가능할 것으로 보여지며 지진성능과 구조물의 거동을 보다 명확하게 예측할 수 있을 것으로 사료 되었다.