• 제목/요약/키워드: Seismic Resistant

검색결과 288건 처리시간 0.026초

비대칭 벽식 구조지 변위기초 내진성능평가 및 보강 (Displacement-based Seismic Assessment and Rehabilitation of Asymmetric Wall Structures)

  • 홍성걸;하태휴
    • 한국지진공학회논문집
    • /
    • 제9권3호
    • /
    • pp.23-32
    • /
    • 2005
  • 편심이 있는 구조물이 지진하중을 받는 경우 비틀림의 발생으로 특정부재에 응력 및 변위가 집중되고 이는 전혀 예상치 못한 구조물의 파괴를 유발할 수 있다. 본 연구에서는 각 횡저항 부재의 한계 변위를 기반으로 하여 구조물 전체의 횡변위와 비틀림각의 관계도(D-R Relationship: Displacement-Rotation Relationship)를 작성하고 변위스펙트럼을 이용하여 내진성능평가를 수행하는 방법을 제안한다. 제안된 내진성능평가의 방법은 시간이력해석의 결과를 이용해서 검증하였다. 또한 다양한 지진수준에 대해 구조물의 다른 성능수준을 기준으로 하는 다단계 내진성능평가를 수행하였다. 최종적으로 그 결과를 기준으로 D-R 관계도를 이용한 내진보강 전략을 제시하였다. 내진보강은 각 부재의 강도/강성을 증가시키는 방법과 연성도를 증가시키는 두 가지의 방법을 사용하였다. 특히 강도/강성을 증가시키는 내진보강 전략에서는 보강의 최적화를 위하여 보강전략을 최적화 문제로 구성하고 BFGS Quasi-Newton method를 이용하여 최적보강전략을 수립하는 과정을 제시하였다.

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

탄소판가새를 이용한 농촌 저층건물의 내진보강 (Seismic Reinforcement of Rural Low-rise Building using Carbon Fiver Plate)

  • 정동조;최성대
    • 한국농촌건축학회논문집
    • /
    • 제16권2호
    • /
    • pp.1-8
    • /
    • 2014
  • In the past, Korea was classified as a region not affected by earthquakes. However, recent increase of earthquakes has forced to strengthen standards of earthquake resistant designs of structures to minimize seismic damage. In addition, it was thought that masonry infill walls in buildings are only acting as partitions, so these walls are not considered in analyzing building structures. But it was found that when seismic loads are applied to a structure with masonry infill walls, the walls affect the structure. Accordingly, this study conducted nonlinear static analyses for a structure constructed before applying earthquake resistant designs in two cases: when considering masonry walls and when not. The result showed that the seismic performance of the structure is insufficient. Thus, the structural resistance of the structure was also studied in two cases: when reinforcing with steel plate braces and when using carbon fiber braces. In the two cases reinforcing two different stiffeners, it was appeared that the behaviors of the structure were similar, though the cross-section area of a carbon fiber brace used to reinforcing the structure is only 12.6% of a steel plate brace, and its weight is only 2.8%. Thus, the reinforcing effect of the thin, light-weighted carbon fiber brace is much larger than that of the steel plate brace, when considering usability and constructability of both materials.

Evaluation of scalar structure-specific ground motion intensity measures for seismic response prediction of earthquake resistant 3D buildings

  • Kostinakis, Konstantinos G.;Athanatopoulou, Asimina M.
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.1091-1114
    • /
    • 2015
  • The adequacy of a number of advanced earthquake Intensity Measures (IMs) to predict the structural damage of earthquake resistant 3D R/C buildings is investigated in the present paper. To achieve this purpose three symmetric in plan and three asymmetric 5-storey R/C buildings are analyzed by nonlinear time history analysis using 74 bidirectional earthquake records. The two horizontal accelerograms of each ground motion are applied along the structural axes of the buildings and the structural damage is expressed in terms of the maximum and average interstorey drift as well as the overall structural damage index. For each individual pair of accelerograms the values of the aforementioned seismic damage measures are determined. Then, they are correlated with several strong motion scalar IMs that take into account both earthquake and structural characteristics. The research identified certain IMs which exhibit strong correlation with the seismic damage measures of the studied buildings. However, the degree of correlation between IMs and the seismic damage depends on the damage measure adopted. Furthermore, it is confirmed that the widely used spectral acceleration at the fundamental period of the structure is a relatively good IM for medium rise R/C buildings that possess small structural eccentricity.

준정적실험에 의한 섬유보강된 철근콘크리트 교각의 내진성능 평가 (Quasi-Static Test for Seismic Performance of R/C Bridge Piers Retrofitted with Glassfibers)

  • 이대형;이재형;정영수;박진영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.871-876
    • /
    • 2001
  • Recent earthquakes in California and Japan caused extensive damage to highway bridge structures. It is also thought that during probable earthquakes bridge structures in Korea could be failed due to the structural deficiencies, which were nonseismically designed and constructed before 1992. In these regards, innovative strengthening methods have been developed to repair reinforced concrete bridge columns, especially by glassfiber sheet bonding methods which are widely used today. The primary objective of this research is to investigate the seismic behavior of RC bridge columns retrofitted with composite straps and to propose pertinent guidelines of repair and rehabilitation method for earthquake resistant design procedure of RC bridges which are located in low or moderate seismicity regions. Six scaled-down concrete test specimens were made with test variables such as lap splice ratio, axial force ratio, confinement ratio, composite straps in the plastic hinge region. Pertinent design guidelines could be developed for the earthquake resistant design of RC bridge piers retrofitted with glassfibers in low or moderate seismic region.

  • PDF

Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)

  • Abdollahzadeh, Gholamreza;Banihashemi, Mohammadreza
    • Steel and Composite Structures
    • /
    • 제14권6호
    • /
    • pp.621-636
    • /
    • 2013
  • Response modification factor is one of the seismic design parameters to consider nonlinear performance of building structures during strong earthquake, in conformity with the point that many seismic design codes led to reduce the loads. In the present paper it's tried to evaluate the response modification factors of dual moment resistant frame with buckling restrained braced (BRB). Since, the response modification factor depends on ductility and overstrength; the nonlinear static analysis, nonlinear dynamic analysis and linear dynamic analysis have been done on building models including multi-floors and different brace configurations (chevron V, invert V, diagonal and X bracing). The response modification factor for each of the BRBF dual systems has been determined separately, and the tentative value of 10.47 has been suggested for allowable stress design method. It is also included that the ductility, overstrength and response modification factors for all of the models were decreased when the height of the building was increased.

블록식 보강토 옹벽의 내진설계 (Seismic Design of Soil-Reinforced Segmental Retaining Walls)

  • 유충식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.69-83
    • /
    • 1999
  • Soil-reinforced segmental retaining walls(SRW) have been proven to be high earthquake-resistant structure during recent earthquakes in United States and Japan. The mechanicals behavior of the SRWs under seismic loading, however, has not been fully understood. Although the seismic design issues for the civil engineering structures have gained much attention in Korea due to the increase in frequency of earthquake occurrence, the seismic design for the SRWs has not been being implemented. This study has been undertaken with the aim of developing a more rational seismic design/analysis method for soil-reinforced segmental retaining walls. This paper present fundamentals of current seismic design/analysis method and the results of a comparative study between NCMA and FHWA design guidelines, Practical implications of the findings from this study are discussed in great detail.

  • PDF

Study of seismic performance and favorable structural system of suspension bridges

  • Zhang, Xin-Jun;Zhang, Chao
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.595-614
    • /
    • 2016
  • By taking the Runyang Highway Bridge over the Yangtze River with 1490 m main span as example, structural response of the bridge under the horizontal and vertical seismic excitations is investigated by the response spectrum and time-history analysis of MIDAS/Civil software respectively, the seismic behavior and the influence of structural nonlinearity on the seismic response of the bridge are revealed. Considering the aspect of seismic performance, the suitability of employing the suspension bridge in super long-span bridges is investigated as compared to the cable-stayed bridge and cable-stayed-suspension hybrid bridge with the similar main span. Furthermore, the effects of structural parameters including the span arrangement, the cable sag to span ratio, the side to main span ratio, the girder height, the central buckle and the girder support system etc on the seismic performance of the bridge are investigated by the seismic response spectrum analysis, and the favorable earthquake-resistant structural system of suspension bridges is also discussed.

전기통신설비를 위한 옥내외 겸용 면진테이블 설계 (Design of a Seismic Isolation Table for both indoor and outdoor Electrical Communication Equipment)

  • 이춘세;안형준;이택원;손인철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.472-472
    • /
    • 2009
  • The safety of cultural properties, medical treatment and electrical communication equipments in a building was hardly considered against the earthquake induced vibration, while the integrity of the building structure has been taken into account through the resistant earthquake design. This paper presents design of a seismic isolation table for both indoor and outdoor electrical communication equipment. First of all, artificial earthquake waves compatible with floor and ground response spectra for electrical communication equipments are generated using previously recorded seismic waves. Two kinds of one-degree-of-freedom seismic isolation table systems: spring-linear damper and spring-friction damper systems are considered and their responses to artificial earthquake waves are simulated. Design parameter study for two seismic isolation tables are performed through simulations and a seismic isolation table for both indoor and outdoor electrical communication equipment is designed considering the simulation results.

  • PDF

내진용 600 및 700 MPa 급 고강도 철근의 미세조직과 인장 특성 비교 (Comparative Study of Microstructure and Tensile Properties of 600 and 700 MPa-Grade High-Strength Seismic Resistant Reinforced Steel Bars)

  • 홍태운;이상인;이준호;심재혁;이명규;황병철
    • 소성∙가공
    • /
    • 제27권5호
    • /
    • pp.281-288
    • /
    • 2018
  • This study deals with the microstructure and tensile properties of 600 and 700 MPa-grade high-strength seismic reinforced steel bars. High-strength seismic resistant reinforced steel bars (SD 600S and SD 700S) were fabricated by TempCore process, especially the SD 700S specimen was more rapid cooled than the SD 600S specimen during the TempCore process. Although two specimens had microstructure of tempered martensite in the surface region, the SD 600S specimen had ferrite-degenerated pearlite in the center region, whereas the SD 700S specimen had bainite-ferrite-degenerated pearlite in the center region. Therefore, their hardness was highest in the surface region and revealed a tendency to decrease from the surface region to the center region because tempered martensite has higher hardness than ferrite-degenerated pearlite or bainite. The SD 700S specimen revealed higher hardness in the center region than SD 600S specimen because it contained a larger amount of bainite as well as ferrite-degenerated pearlite. On the other hand, tensile test results indicated the SD 600S and SD 700S specimens revealed continuous yielding behavior because of formation of degenerated pearlite or bainite in the center region. The SD 600S specimen had a little higher tensile-to-yield ratio because the presence of ferrite and degenerated pearlite in the center region and the lower fraction of tempered martensite enhance work hardening.