• Title/Summary/Keyword: Seismic P-wave detection

Search Result 13, Processing Time 0.017 seconds

A Study on the Underwater Target Detection Using the Waveform Inversion Technique (파형역산 기법을 이용한 수중표적 탐지 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Kim, Woo Shik;Choi, Sang Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.487-492
    • /
    • 2015
  • A short-range underwater target detection and identification techniques using mid- and high-frequency bands have been highly developed. However, nowadays the long-range detection using the low-frequency band is requested and one of the most challengeable issues. The waveform inversion technique is widely used and the hottest technology in both academia and industry of the seismic exploration. It is based on the numerical analysis tool, and could construct more than a few kilometers of the subsurface structures and model-parameters such as P-wave velocity using a low-frequency band. By applying this technique to the underwater acoustic circumstance, firstly application of underwater target detection is verified. Furthermore, subsurface structures and it's parameters of the war-field are well reconstructed. We can confirm that this technique greatly reduces the false-alarm rate for the underwater targets because it could accurately reproduce both the shape and the model-parameters at the same time.

A Study of the Application of Earthquake Early Warning System for the Enhancements in Protective Action by Korea National Park (국립공원의 지진 대응 체계 개선을 위한 지진 조기경보 시스템의 적용에 관한 연구)

  • Yang, Eomzi;Ha, Seong Jun;Kim, Won Kyung;Yun, Tae Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.439-448
    • /
    • 2018
  • Conventional Earthquake Early Warning System (EEWS) detects the propagated P-wave from epicenter which should be achieved within 5 seconds to provide seconds to minutes of warning, allowing people to prepare for protective actions. EEWS in Korea is currently capable of providing a warning within 50 seconds after the primary P-wave detection, however, it is well-known that earthquake warning systems operating around Korean National Parks (KNP) have limited capability to fully monitor earthquake events. This study, therefore, presents a strategy to quantify the potential vulnerability to earthquake hazards by superimposing the distribution of Korea Integrated Seismic System (KISS) and the discretized map of KNP. Total 22 national parks are evaluated, and the results suggest that the improvement of the on-site systems should be necessitated for Gyoengju, Gyeryongsan, Songnisan, Gayasan, and Deogyusan national parks, whereas enhancement of regional systems is required for Bukhansan national park.

S-Wave Velocities Beneath Jeju Island, Korea, Using Inversion of Receiver Functions and the H-κ Stacking Method (수신함수 역산 및 H-κ 중합법을 이용한 제주도 하부의 S파 지각 속도)

  • Jeon, Taehyeon;Kim, Ki Young;Woo, Namchul
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2013
  • Shear-wave velocity ($v_s$) structures beneath two seismic stations, JJU and JJB on the flanks of the volcano Halla on Jeju island, Korea, were estimated by receiver-function inversion and H-${\kappa}$ stacking applied to 150 teleseismic events ($M_W{\geq}5.5$) recorded since 2007. $P_S$ waves converted at the Moho discontinuity does not appear clearly for northwesterly back-azimuths ($207{\sim}409^{\circ}$, average $308^{\circ}$) at station JJU and southeasterly back-azimuths ($119{\sim}207^{\circ}C$, average $163^{\circ}$) at station JJB. This may be due to a gradual velocity increase at Moho or heterogeneity within the crust. The $v_s$ models derived by inversion of receiver functions indicate a distinct low velocity layer ($v_s{\leq}3.5km/s$; LVL) within the crust and a gradual increase in $v_s$ in the depth interval of 30 to 40 km. Within the radius of 18 km beneath station JJB, the LVL occurs at depths of 14 ~ 26 km and the 'Moho' ($v_s{\geq}4.3km/s$) is at 34 km depth. Ten kilometers to the west, within the radius of 16 km beneath station JJU, both the LVL and the Moho are significantly shallower, at depths of 14 to 24 km and 30 km, respectively. H-${\kappa}$ analyses for stations JJU and JJB yield estimated crustal thickness of 29 and 33 km and $v_p/v_s$ ratios of 1.64 and 1.75, respectively. The lesser $v_p/v_s$ ratio was derived for rocks nearest to th peak of the volcano.