• Title/Summary/Keyword: Seismic Mass

Search Result 510, Processing Time 0.02 seconds

Source Mechanism Analysis and Simplified Modeling for Rockburst (록버스트 발생기구 분석과 단순화 모델링)

  • Choi, Byung-Hee;Oh, Se-Wook;Kim, Hyunwoo;Jung, Yong-Bok
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • Rockburst is a sudden and violent failure of rock. During the failure process, excess energy is liberated as seismic energy, which in turn causes the surrounding rock mass to vibrate. The level of the ground vibration can reach a magnitude of over 4.5 in the Richter local scale. Thus, a rockburst can cause not only injury to persons, but also damage to both underground workings and surface structures. In this paper the source mechanism of rockburst is analyzed based mainly on the two reports of the Canadian Rockburst Research Program (CRRP). A simplified LS-DYNA modeling is also performed to identify the tensile failure patterns occurring in the remaining rock mass right after blasting in mine stope. The configuration of the simplified model will probably be useful in small-scale laboratory tests for investigating the source mechanism of rockburst.

H-TMD with hybrid control method for vibration control of long span cable-stayed bridge

  • Han, Bing;Yan, Wu Tong;Cu, Viet Hung;Zhu, Li;Xie, Hui Bing
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.349-358
    • /
    • 2019
  • Long span cable-stayed bridges are extremely vulnerable to dynamic excitations such as which caused by traffic load, wind and earthquake. Studies on cable-stayed bridge vibration control have been keenly interested by researchers and engineers in design new bridges and assessing in-service bridges. In this paper, a novel Hybrid-Tuned Mass Damper (H-TMD) is proposed and a hybrid control model named Mixed Logic Dynamic (MLD) is employed to build the bridge-H-TMD system to mitigate the vibrations. Firstly, the fundamental theory and modeling process of MLD model is introduced. After that, a new state switching design of the H-TMD and state space equations for different states are proposed to control the bridge vibrations. As the state switching designation presented, the H-TMDs can applied active force to bridge only if the structural responses are beyond the limited thresholds, otherwise, the vibrations can be reduced by passive components of dampers without active control forces provided. A new MLD model including both passive and active control states is built based on the MLD model theory and the state switching design of H-TMD. Then, the case study is presented to demonstrate the proposed methodology. In the case study, the control scheme with H-TMDs is applied for a long span cable-stayed bridge, and the MLD model is established and simulated with earthquake excitation. The simulation results reveal that the suggested method has a well damping effect and the established system can be switched between different control states as design excellently. Finally, the energy consumptions of H-TMD schemes are compared with that of Active Tuned Mass Damper (ATMD) schemes under variable seismic wave excitations. The compared results show that the proposed H-TMD can save energy than ATMD.

Nonlinear incremental dynamic analysis and fragility curves of tall steel buildings with buckling restrained braces and tuned mass dampers

  • Verki, Amir Masoumi;Preciado, Adolfo
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.169-184
    • /
    • 2022
  • The importance of seismicity in developing countries and the strengthening of buildings is a topic of major importance. Therefore, the study of several solutions with the development of new technologies is of great importance to investigate the damage on retrofitted structures by using probabilistic methods. The Federal Emergency Management Agency considers three types of performance levels by considering different scenarios, intensity and duration. The selection and scaling of ground motions mainly depends on the aim of the study. Intensity-based assessments are the most common and compute the response of buildings for a specified seismic intensity. Assessments based on scenarios estimate the response of buildings to different earthquake scenarios. A risk-based assessment is considered as one of the most effective. This research represents a practical method for developing countries where exists many active faults, tall buildings and lack of good implementable approaches. Therefore, to achieve the main goal, two high-rise steel buildings have been modeled and assessed. The contribution of buckling-restrained braces in the elastic design of both buildings is firstly verified. In the nonlinear static range, both buildings presented repairable damage at the central top part and some life safety hinges at the bottom. The nonlinear incremental dynamic analysis was applied by 15 representative/scaled accelerograms to obtain levels of performance and fragility curves. The results shown that by using probabilistic methods, it is possible to estimate the probability of collapse of retrofitted buildings by buckling-restrained braces and tuned mass dampers, which are practical retrofitting options to protect existing structures against earthquakes.

Relationship between Earthquake and Fluctuation of Water Level in Active Fault Zone and National Groundwater Monitoring Wells of Gyeongju Area (경주 활성단층대 및 주변 국가지하수 관측정에서 지진과 수위변동 상관관계 연구)

  • Jang, Hyeon-Woo;Jeong, Chan-Ho;Lee, Yong-Cheon;Lee, Yu-Jin;Hong, Jin-Woo;Kim, Cheon-Hwan;Kim, Young-Seog;Kang, Tae-Seob
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.617-634
    • /
    • 2020
  • The purpose of this study is to investigate the relationship of between earthquakes and fluctuation of water level in a groundwater well of the active-fault zone and 124 national groundwater monitoring wells in Gyeongju area. The spatial and temporal relationships between the fluctuation of water level and the earthquake were analyzed by the calculation of earthquake effectiveness (ε) and q-factor which are the function of earthquake magnitude and distance from epicenter. Two earthquake events of E1 (April 22, 2019, M 3.8) and E2 (June 11, 2019, M 2.5) show a close relationship with a post-seismic 83 cm decrease and a pre-seismic 76 cm increase in water level at the active fault zone of Dangu-ri, respectively. The spatial analysis of water level fluctuation data in National Groundwater Monitoring Networks caused by earthquake events shows a more distinct response in deep groundwater around fault zones than other area, and a greater change in deep groundwater than shallow groundwater. It's inferred that the decrease and increase in groundwater level are affected by the expansion of fractures and compression of rock mass due to seismic stress, respectively. The effective ranges of ε-value and q-factor of the monitoring well in Dangu-ri were calculated as 2.70E-10~5.60E-10 and 14.4~18.0, respectively.

Stability analysis of a rock slope in Himalayas

  • Latha, Gali Madhavi;Garaga, Arunakumari
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.125-140
    • /
    • 2010
  • Slope stability analysis of the right abutment of a railway bridge proposed at about 350 m above the ground level, crossing a river and connecting two huge hillocks in the Himalayas, India is presented in this paper. The site is located in a highly active seismic zone. The rock slopes are intensely jointed and the joint spacing and orientation are varying at different locations. Static slope stability of the rock slope is studied using equivalent continuum approach through the most commonly used commercial numerical tools like FLAC and SLOPE/W of GEOSTUDIO. The factor of safety for the slope under static conditions was 1.88 and it was reduced by 46% with the application of earthquake loads in pseudo-static analysis. The results obtained from the slope stability analyses confirmed the global stability of the slope. However, it is very likely that there could be possibility of wedge failures at some of the pier locations. This paper also presents the results from kinematics of right abutment slope for the wedge failure analysis based on stereographic projections. Based on the kinematics, it is recommended to flatten the slope from 50o to 43o to avoid wedge failures at all pier locations.

A Study on the Behavior of High-rise Buildings Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 고층 구조물의 거동에 관한 연구)

  • Kim, Se-Hyun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.243-251
    • /
    • 2005
  • In the seismic design the pile foundation system of the buildings generally have been modeled to have a fixed end for its convenience and conservativeness. But it is necessary to consider the soil-structure interaction for more reliable design. In this study, the framed tube building and brace tube building with pile foundation system under earthquake were analyzed considering soil-structural interaction by 3 pile foundation modeling methods; fixed-end model, 6 springs model and p-y springs model. And 2 soil conditions were used in analysis. For each cases, displacements, drifts, maximum stress, periods and 1st mode mass participation ratios were compared.

Lumped Parameter Model of Transmitting Boundary for the Time Domain Analysis of Dam-Reservoir System (댐의 시간영역 지진응답 해석을 위한 호소의 집중변수모델)

  • 김재관;이진호;조정래
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.27-38
    • /
    • 2001
  • A mechanical lumped parameter model is proposed for the dynamic modeling of a semi-infinite reservoir. A semi-analytic transmitting boundary is derived for a semi-infinite 2-D reservoir of constant depth. The characteristics of the solution are examined in both frequency and time domains. Mass, damping and spring coefficients of the mechanical model are obtained to preserve the major features of the solution such as eigenfrequencies and the shapes of Bessel functions that appear as kernels in the convolution integrals. The lumped parameter model in its final form consists of two masses, a spring and two dampers for each eigenfrequency. Application examples demonstrated that the new lumped parameter model could be used for the time domain analysis of dam-reservoir systems.

  • PDF

Estimation of elastic seismic demands in TU structures using interactive relations between shear and torsion

  • Abegaz, Ruth A.;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.59-77
    • /
    • 2020
  • The code static eccentricity model for elastic torsional design of structures has two critical shortcomings: (1) the negation of the inertial torsional moment at the center of mass (CM), particularly for torsionally-unbalanced (TU) building structures, and (2) the confusion caused by the discrepancy in the definition of the design eccentricity in codes and the resistance eccentricity commonly used by engineers such as in FEMA454. To overcome these shortcomings, using the resistance eccentricity model that can accommodate the inertial torsional moment at the CM, interactive relations between shear and torsion are proposed as follows: (1) elastic responses of structures at instants of peak edge-frame drifts are given as functions of resistance eccentricity, and (2) elastic hysteretic relationships between shear and torsion in forces and deformations are bounded by ellipsoids constructed using two adjacent dominant modes. Comparison of demands estimated using these two interactive relations with those from shake-table tests of two TU building structures (a 1:5-scale five-story reinforced concrete (RC) building model and a 1:12-scale 17-story RC building model) under the service level earthquake (SLE) show that these relations match experimental results of models reasonably well. Concepts proposed in this study enable engineers to not only visualize the overall picture of torsional behavior including the relationship between shear and torsion with the range of forces and deformations, but also pinpoint easily the information about critical responses of structures such as the maximum edge-frame drifts and the corresponding shear force and torsion moment with the eccentricity.

Concept Design of Vibration Isolation System for Development of Optical Payload of Satellite (위성광학탑재체 개발을 위한 나노급 방진장치 개념 설계)

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Kim, Young-Key;Moon, Guee-Won;Moon, Sang-Moo;Kim, Hong-Bea
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.949-952
    • /
    • 2005
  • According to the national space program in Korea, is satellites will be launch into space up to 2015. Especially, KARI is going to develope of its own a high resolution camera of less than 1m to be mounted on next Multipurpose Satellite. When performing testing of large spacecraft or hardware that will be launched into orbit, it is necessary to conduct a testing with space-simulated environment. To achieve this requirement, thermal vacuum chamber is generally used. KARI has been developed a very Large Thermal Vacuum Chamber(LTVC) from 2003 to accomodate future space program, such as KOMPSAT, COMS, and Launch vehicles. This new facility will be used to qualify the first self developed High Resolution Camera, which will be loaded on KOMPSAT-3. To perform an optical test for space camera, it is necessary to provide vibration free environment. Thus the vibration responses on the optical table due to external vibration should be minimized by using a special isolation system. In this paper, we propose the concept design of vibration isolation system for the development of the high resolution camera.

  • PDF

A STUDY ON THE CORRELATION BETWEEN GROUND SUBSIDENCE AREA NEAR ABANDONED UNDERGROUND COAL MINE AND GEOPHYSICAL PROSPECTING DATA USING GIS

  • Kim Ki-Dong;Choi Jong-Kuk;Won Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.325-328
    • /
    • 2005
  • To estimate presumptive local ground subsidence area near Abandoned Under ground Coal Mine(AUCM) at Samcheok city in Korea, the geological properties of existing ground subsidence area and the geophysical prospecting data were analyzed using GIS. The electrical resistivity survey and seismic reflection survey database were constructed from investigation reports and factors which are related with ground subsidence such as geological map, topological map, land use map, lineament map, groundwater level, RMR (Rock Mass Rating), mining tunnel map and slope database were constructed also to make a comparative study of each parameters. As a result of the spatial analysis of existing ground subsidence area, 9 major factors causing ground subsidence were extracted and a connection between the structure of underground and the ground subsidence was determined from the analysis of geophysical prospecting data. The estimation of presumptive ground subsidence area was performed using the correlation between the result from neural network analysis of 9 factors and the scrutiny of geophysical prospecting data.

  • PDF