• Title/Summary/Keyword: Seismic Loads

Search Result 780, Processing Time 0.025 seconds

Evaluation of the Dynamic Behavior of Inclined Tripod Micropiles Using Dynamic Centrifuge Test (원심모형실험을 이용한 그룹 삼축 마이크로파일의 동적거동 평가)

  • Kim, Yoon-Ah;Kwon, Tae-Hyuk;Kim, Jongkwan;Han, Jin-Tae;Kim, Jae-Hyun;An, Sung-Yul
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.93-102
    • /
    • 2023
  • Despite recent modifications to building structural standards emphasizing the seismic stability of building foundations, the current design focus remains solely on vertical support, resulting in insufficient consideration of horizontal loads during earthquakes. In this study, we evaluated the dynamic behavior of inclined tripod micropiles (ITMP), which provide additional seismic resistance against horizontal and vertical loads during earthquakes. A comparison of the dynamic characteristics, such as acceleration, displacement, bending moment, and axial force, of ITMP with a 15° installation angle and normal vertical micropiles with a 0° installation angle was performed using dynamic centrifuge model tests. Results show that under moderate seismic loads, the proposed ITMP exhibited lower acceleration responses than the vertical micropiles. However, when subjected to a long-period strong seismic excitation, such as sine (2 Hz), ITMP showed greater responses than the vertical micropiles in terms of acceleration and settlement. These results indicate that the use of ITMP reduces the amplif ication of short-period (high-f requency) contents compared with the use of vertical micropiles. Therefore, ITMP can be used to enhance seismic performance of structures.

Seismic Qualification Analysis of a Vertical-Axis Wind Turbine (소형 수직축 풍력발전기의 내진검증 해석)

  • Choi, Young-Hyu;Hong, Min-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.

Seismic fragility analysis of wood frame building in hilly region

  • Ghosh, Swarup;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.97-107
    • /
    • 2021
  • A comprehensive study on seismic performance of wood frame building in hilly regions is presented. Specifically, seismic fragility assessment of a typical wood frame building at various locations of the northeast region of India are demonstrated. A three-dimensional simplified model of the wood frame building is developed with due consideration to nonlinear behaviour of shear walls under lateral loads. In doing so, a trilinear model having improved capability to capture the force-deformation behaviour of shear walls including the strength degradation at higher deformations is proposed. The improved capability of the proposed model to capture the force-deformation behaviour of shear wall is validated by comparing with the existing experimental results. The structural demand values are obtained from nonlinear time history analysis (NLTHA) of the three-dimensional wood frame model considering the effect of uncertainty due to record to record variation of ground motions and structural parameters as well. The ground motion bins necessary for NLTHA are prepared based on the identified hazard level from probabilistic seismic hazard analysis of the considered locations. The maximum likelihood estimates of the lognormal fragility parameters are obtained from the observed failure cases and the seismic fragilities corresponding to different locations are estimated accordingly. The results of the numerical study show that the wood frame constructions commonly found in the region are likely to suffer minor cracking or damage in the shear walls under the earthquake occurrence corresponding to the estimated seismic hazard level; however, poses negligible risk against complete collapse of such structures.

How does the knowledge level affect the seismic retrofit cost? The case study of a RC building

  • Miano, Andrea;Chiumiento, Giovanni;Formisano, Antonio;Prota, Andrea
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.557-569
    • /
    • 2022
  • The retrofit of existing structures in high seismic zones is a crucial issue in the earthquake engineering field. The interest of the research community is particularly high for the structures that do not respect current seismic codes and present structural deficiencies such as poor detailing and lack of capacity design provisions. A reinforced concrete (RC) school building is used as case study to show the influence of different knowledge levels on the seismic retrofitting cost assessment. The safety assessment of the case study building highlights deficiencies under both vertical and seismic loads. By considering all the possible knowledge levels defined by the Italian such as by the European codes in order to derive the mechanical properties of the school building constitutive materials, the retrofit operations are designed to achieve different seismic safety thresholds. The retrofit structural costs are calculated and summed up to the costs for in-situ in tests. The paper shows how for the case study building the major costs spent for a large number of in-situ tests allows to save a consistent amount of money for retrofit operations. The hypothesis of demolition and reconstruction of the building is also compared in terms of costs with all the analyzed retrofit options.

Seismic retrofit of structures using added steel column friction dampers

  • Mohammad Mahdi Javidan;Asad Naeem;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.257-270
    • /
    • 2023
  • In this study, the feasibility and applicability of a friction damper with a vertical installation scheme are investigated. This device is composed of a steel section and two friction hinges at both ends which dissipate seismic energy. Due to its small width and vertical installation scheme, the proposed damper can minimize the interference with architectural functions. To evaluate the performance of the proposed damper, its mechanical behavior is theoretically evaluated and the required formulas for the yield strength and elastic stiffness are derived. The theoretical formulas are verified by establishing the analytical model of the damper in the SAP2000 software and comparing their results. To further investigate the performance of the developed damper, the provided analytical model is applied to a 4-story reinforced concrete (RC) structure and its performance is evaluated before and after retrofit under the Maximum Considered Earthquake (MCE) hazard level. The seismic performance is thoroughly evaluated in terms of maximum interstory drift ratio, displacement time history, residual displacement, and energy dissipation. The results show that the proposed damper can be efficiently used to protect the structure against seismic loads.

Dynamic Analysis for Base Isolated Structure with Shear Keys (쉬어키를 가진 면진건축물의 동적해석)

  • Han, Duck-Jeon;Kim, Tae-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.45-53
    • /
    • 2007
  • Recently, high-rise base isolated building structures with shear keys are often constructed in Japan which frequently occurs earthquakes. High-rise buildings are less damaged because those buildings have longer natural period than md or low rise buildings. The shear key is device that prevents the base isolators operating by the wind loads not by the earthquake loads. In case of big base shear force acts on the shear keys by earthquake, this device is broken and base isolator is operated. Therefore, seismic intensities play a role in acting on the shear keys. If wind loads are hither than the earthquake loads, the shear keys designed by wind loads are not operated in earthquakes. So, the requirements of shear keys in high-rise base isolated building structures must be examined in Korea with moderate seismic legions. In this study shear keys are applied with 5 and 15 stories base isolated building structures and investigated their dynamic responses to original and 1/2 scale downed El Centre NS(1940) ground motions. The results show that the yield shear forces of the shear keys affect significantly the dynamic behavior of base isolated building structures

  • PDF

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Seismic Behavior of RC Beam-Column Exterior Joints with Unbonded Tendons and High Strength Concrete (비부착 강연선과 고강도 콘크리트를 적용한 철근콘크리트 외부 접합부의 내진 거동)

  • Kwon, Byung Un;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.283-292
    • /
    • 2015
  • In the moment frame subjected to earthquake loads, beam-column joint is structurally important for ductile behavior of a system. ACI Committee 352 proposed guidelines for designing beam-column joint details. The guidelines, however, need to be updated because of the lack of data regarding several factors that may improve the performance of joints. The purpose of this study is to investigate the seismic performance of reinforced concrete exterior joints with high-strength materials and unbonded tendons. Three specimens with different joint shear demand-to-strength ratios were constructed and tested, where headed bars were used to anchor the beam bars into the joint. All specimens showed satisfactory seismic behavior including moment strength of 1.3 times the nominal moment, ductile performance (ductility factor = at least 2.4), and sufficiently large dissipated energy.