• Title/Summary/Keyword: Seismic Interpretation

Search Result 134, Processing Time 0.026 seconds

An Introduction to Time-lapse Seismic Reservoir Monitoring (시간경과 탄성파 저류층 모니터링 개론)

  • Nam, Myung-Jin;Kim, Won-Sik
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.203-213
    • /
    • 2011
  • Time-lapse seismic surveys make repeated seismic surveys at different stages of oil production of a hydrocarbon reservoir to monitor changes in reservoir like fluid saturation. Since the repeatable surface seismic measurements can identify fluid types and map fluid saturations, oil and gas companies can make much more informed decision during not only production but also drilling and development. If time-lapse seismic surveys compare 3D seismic surveys, the time-lapse surveys are widely called as 4D seismic. A meaningful time-lapse interpretation is based on the repeatability of seismic surveys, which mainly depends on improved positioning and reduced noise (if surveys were designed properly through a feasibility study). The time-lapse interpretation can help oil and gas companies to maximize oil and gas recovery. This paper discusses about time-lapse seismic surveys mainly focused on feasibility, repeatability, data processing and interpretation.

A Study on Interpretation of Seismic Reflection Traveltimes in Anisotropic Layers (이방성 지층에서의 탄성파 반사 주시자료의 해석에 관한 연구)

  • Hwang, Se Ho;Yang, Seung Jin;Jang, Seong Hyung;Kim, Jung Yul
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.201-207
    • /
    • 1994
  • This paper presents a technique to determine anisotropic elastic coefficients from traveltimes of seismic reflections or vertical seismic profiling (VSP) in tranversely isotropic layers whose thicknesses are known. The elastic coefficients are calculated from three different velocities (vertical, horizontal and skew velocities) which are determined from skew hyperbolic traveltimes by least-square fitting or semblance analysis. This interpretation technique is tested for synthetic traveltime data obtained for transversely isotropic models. The test shows that the anisotropic elastic constants of the models are determined accurately by this interpretation method.

  • PDF

A Study of Tunnel Position Interpretation using Seismic Travel Time and Amplitude Data Simulation (탄성파 주시 및 진폭 자료의 Simulation에 의한 터널 위치 추적에 관한 연구)

  • Suh, Baek-Soo;Sohn, Kwon-Ik
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.105-111
    • /
    • 2007
  • Seismic and georadar prospecting methods have been used to detect deep seated small tunnel in Korea. The tunnel position interpretation of seismic method has been performed mainly by wave travel time and amplitude. But it was very unstable to interpret the exact tunnel position because of short interval of two measuring boreholes and picking mistake of first arrivals. To solve this problem, this study applied travel-time and amplitude data simulation methods to detect tunnel position.

Study of Seismic Data Processing Method for Tunnel Detection (터널탐사를 위한 탄성파 자료처리법에 관한 연구)

  • Suh, Baek-Soo;Sohn, Kwon-Ik
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.633-642
    • /
    • 2007
  • Traveltime tomogram is generally used for interpretation of seismic tunnel data. In the field data, the first arrival traveltime is less dispersive with increasing source-receiver seperation compared to theoretical model data. So the result of calculation can be serious despite of small errors such as traveltime picking. In this study, amplitude method and error tomogram method are tried to overcome these problems. This method will help the interpretation of the data from the underground tunnel.

Fault Detection for Seismic Data Interpretation Based on Machine Learning: Research Trends and Technological Introduction (기계 학습 기반 탄성파 자료 단층 해석: 연구동향 및 기술소개)

  • Choi, Woochang;Lee, Ganghoon;Cho, Sangin;Choi, Byunghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.2
    • /
    • pp.97-114
    • /
    • 2020
  • Recently, many studies have been actively conducted on the application of machine learning in all branches of science and engineering. Studies applying machine learning are also rapidly increasing in all sectors of seismic exploration, including interpretation, processing, and acquisition. Among them, fault detection is a critical technology in seismic interpretation and also the most suitable area for applying machine learning. In this study, we introduced various machine learning techniques, described techniques suitable for fault detection, and discussed the reasons for their suitability. We collected papers published in renowned international journals and abstracts presented at international conferences, summarized the current status of the research by year and field, and intensively analyzed studies on fault detection using machine learning. Based on the type of input data and machine learning model, fault detection techniques were divided into seismic attribute-, image-, and raw data-based technologies; their pros and cons were also discussed.

3D Seismic Data Interpretation of the Gorse II Area, Block VI-1, Offshore Southeast Korea (한국 대륙붕 VI-1광구 고래 II지역의 3D탄성파 자료해석)

  • Shin Kook Sun;Yu Kang Min;Kim Kun Deuk;Um Chang Lyeol
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.27-35
    • /
    • 1997
  • The Gorae II area is located in the southwestern margin of the Ulleung Basin, East Sea and corresponds to the Ulleung Trough. The survey of 3D seismic data in this area was performed to delineate the structural leads confirmed by the previous 2D seismic data. As a part of 3D interpretation, basement related structural movements and their relationship with the stratigraphy were studied. The study shows that eight sequences were identified which are genetically related to the tectonics and sediment supply in this area. The geologic structures characterizing the study area consist of : (1) block faults developed in the early stage of basin opening, (2) late Miocene thrusts, and (3) Pliocene wrench faults. The eight sequences consist of pre-rift (acoustic basement), syn-rift (Sequence $A_1, A_2$), post-rift (Sequence $B_1{\~}B_3$), syn-compressional sequence (Sequence C), and post-compressional sequence(Sequence D) from oldest to youngest. The time structure and isochron maps were constructed for each sequence and also used in seismic facies analysis and interpretation of sedimentary environment. The interpretation results reveal that the relative sea level changes caused by several stages of tectonic movements and sediment supply control the stratal and structural geometry of Ulleung basin.

  • PDF

Development of an uncertainty quantification approach with reduced computational cost for seismic fragility assessment of cable-stayed bridges

  • Akhoondzade-Noghabi, Vahid;Bargi, Khosrow
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.385-401
    • /
    • 2022
  • Uncertainty quantification is the most important challenge in seismic fragility assessment of structures. The precision increment of the quantification method leads to reliable results but at the same time increases the computational costs and the latter will be so undesirable in cases such as reliability-based design optimization which includes numerous probabilistic seismic analyses. Accordingly, the authors' effort has been put on the development and validation of an approach that has reduced computational cost in seismic fragility assessment. In this regard, it is necessary to apply the appropriate methods for consideration of two categories of uncertainties consisting of uncertainties related to the ground motions and structural characteristics, separately. Also, cable-stayed bridges have been specifically selected because as a result of their complexity and the according time-consuming seismic analyses, reducing the computations corresponding to their fragility analyses is worthy of studying. To achieve this, the fragility assessment of three case studies is performed based on existing and proposed approaches, and a comparative study on the efficiency in the estimation of seismic responses. For this purpose, statistical validation is conducted on the seismic demand and fragility resulting from the mentioned approaches, and through a comprehensive interpretation, sufficient arguments for the acceptable errors of the proposed approach are presented. Finally, this study concludes that the combination of the Capacity Spectrum Method (CSM) and Uniform Design Sampling (UDS) in advanced proposed forms can provide adequate accuracy in seismic fragility estimation at a significantly reduced computational cost.

Practical Aspects of Seismic Sequence Stratigraphy (Applications to Hydrocarbon Exploration/Production)

  • Baik, Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.27-34
    • /
    • 2009
  • Since the late 1980s, the sequence stratigraphic method has become a critical tool for hydrocarbon exploration/development projects in many frontier and mature sedimentary basins. The successful application of this method with high resolution 3D seismic data and well data is particularly important in frontier and deepwater areas, where exploration risk and capital commitment are high. Many international major and national oil companies have been using sequence stratigraphic approach as one of the main interpretation tools for the evaluation of their high impact projects. Applied correctly, this integrated interpretation method is a powerful tool that can be used to unravel the complex stratigraphy of a given basin and to dramatically increase overall understanding of various depositional models for both siliciclastic and carbonate systems.

  • PDF

Depositional Facies Analysis from Seismic Attributes: Implication of Reservoir Characterization

  • Park Yong-Joon
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.2-16
    • /
    • 1999
  • This study includes structural analysis of the northern Pattani Basin, areal description of depositional facies, and their spatial relationships using 3-D seismic and well data. Well log data indicate that the representative depositional facies of the studied intervals are sandy, fluvial, channel-fill facies encased in shaly floodplain deposits. Seismic responses were predicted from a synthetic seismogram using a model of dominant depositional facies. Peak-to-trough amplitude and instantaneous frequency seismic attributes are used in depositional facies interpretation. Three Intervals A, B and C are interpreted on the successive stratal surfaces. The shallowest interval, A, is the Quaternary transgressive succession. Each stratal surface showed flow pattern variation of fluvial channel facies. Two transgressive cycles were identified in interval A. Interval B also indicated fluvial facies. Depositional facies architectures are described by interpreting seismic attributes on the successive stratal surfaces.

  • PDF

The Seismic Multipulse Deconvolution (다중펄스 방법을 이용한 디컨벌루션)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.487-491
    • /
    • 1995
  • The multipulse model of linear predictive coding (LPC), which has been successfully used for compressing of speech signals into an impulse excitation, is here applied to seismic data which contains multiples. Multiples are happened by successive reflection between layers and make the seismic interpretation difficult In this paper, the author applied the enhanced multipulse method to seismic traces to compress source-wavelets into spikes, and to eliminate/reduce multiples. The enhanced multipulse method which was applied to seismic traces extracted the amplitudes and locations of reflectivity function, which depicts the subsurface configuration, by iterative computation of autoregressive (AR) estimation method.

  • PDF