• 제목/요약/키워드: Seismic Ground Response Analysis

검색결과 558건 처리시간 0.029초

The effect of local topography on the seismic response of a coupled train-bridge system

  • Qiao, Hong;Du, Xianting;Xia, He;De Roeck, Guido;Lombaert, Geert;Long, Peiheng
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.177-191
    • /
    • 2019
  • The local topography has a significant effect on the characteristics of seismic ground motion. This paper investigates the influence of topographic effects on the seismic response of a train-bridge system. A 3-D finite element model with local absorbing boundary conditions is established for the local site. The time histories of seismic ground motion are converted into equivalent loads on the artificial boundary, to obtain the seismic input at the bridge supports. The analysis of the train-bridge system subjected to multi-support seismic excitations is performed, by applying the displacement time histories of the seismic ground motion to the bridge supports. In a case study considering a bridge with a span of 466 m crossing a valley, the seismic response of the train-bridge system is analyzed. The results show that the local topography and the incident angle of seismic waves have a significant effect on the seismic response of the train-bridge system. Leaving these effects out of consideration may lead to unsafe analysis results.

Viaduct seismic response under spatial variable ground motion considering site conditions

  • Derbal, Rachid;Benmansour, Nassima;Djafour, Mustapha;Matallah, Mohammed;Ivorra, Salvador
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.557-566
    • /
    • 2019
  • The evaluation of the seismic hazard for a given site is to estimate the seismic ground motion at the surface. This is the result of the combination of the action of the seismic source, which generates seismic waves, the propagation of these waves between the source and the site, and site local conditions. The aim of this work is to evaluate the sensitivity of dynamic response of extended structures to spatial variable ground motions (SVGM). All factors of spatial variability of ground motion are considered, especially local site effect. In this paper, a method is presented to simulate spatially varying earthquake ground motions. The scheme for generating spatially varying ground motions is established for spatial locations on the ground surface with varying site conditions. In this proposed method, two steps are necessary. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function. An empirical coherency loss model is used to define spatial variable seismic ground motions at the base rock. In the second step, power spectral density function of ground motion on surface is derived by considering site amplification effect based on the one dimensional seismic wave propagation theory. Several dynamics analysis of a curved viaduct to various cases of spatially varying seismic ground motions are performed. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effect, to spatial ground motions with considering coherency loss, phase delay and local site effects are also calculated. The results showed that the generated seismic signals are strongly conditioned by the local site effect. In the same sense, the dynamic response of the viaduct is very sensitive of the variation of local geological conditions of the site. The effect of neglecting local site effect in dynamic analysis gives rise to a significant underestimation of the seismic demand of the structure.

도시철도 지중 콘크리트 구조물의 내진해석법 적용에 관한 연구 (A Study of seismic analysis method of urban rail transit's underground concrete structure)

  • 이희영;이동호;김은겸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.1159-1164
    • /
    • 2005
  • Seismic analysis methods in use on ground structure are equivalentstatic analysis, response-displacement method and dynamic analysis etc. Equivalentstatic analysis does not considerdynamic effect, and dynamic analysis process is very complex. then 'Urbanrail transit earthquake-resistance design standard (2005.06)' is persuading that analyze by response displacement method that consider enough dynamic effect of ground structure statically. But, It is very complex and difficult to apply response-displacement method in the field. So, modified equivalentstatic analysis or pseudo static analysis that is easy to apply in the field and have rationality of design is practically used. In this study, I try to prescribe the applicable scale of structure and static analysis that have calculative effectiveness about response-displacement method by comparing and analyzing the result of each analysis method according to the scale of urban rail transit' box type concrete structure and by performing seismic analysis that apply modified equivalentstatic analysis, pseudo static analysis and response-displacement method changing the kind of ground, depth of bedrock, size of structure.

  • PDF

Seismic analysis of shear wall buildings incorporating site specific ground response

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.433-453
    • /
    • 2016
  • During earthquake, the motion of ground is affected significantly by source characteristics, source-to-site path properties and local site conditions. Due to the influence of local soil conditions different places experience distinctive amplitude of surface ground motion. Ground response analysis of a specific site utilizing the borehole information at different locations is done in present study. The ground motion with the highest peak ground acceleration for this site obtained from the ground response analysis is used in finite element soil-structure interaction analysis of multi-storey shear wall buildings with various positions of shear walls. The variation in seismic response of buildings and advantageous position of shear wall are determined. The study reveals that providing shear wall at the core of buildings at the specific site is advantageous among all shear wall configurations considered.

상이한 지반조건을 갖는 아치구조물의 지진응답 분석 (Seismic Response of Arch Structure Subjected to Different Ground Motion)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.113-119
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response of spatial structure for seismic design of spatial structure. An arch structure is used as an example structure because it has primary characteristics of spatial structures. Multiple support excitation may be subjected to supports of a spatial structure because ground condition of spatial structures is different. In this study, the response analysis of the arch structure under multiple support excitation and simple support excitation is studied. By means of the pseudo excitation method, the seismic response is analyzed for long span spatial structure. It shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic response of spatial structure under multiple support excitation and simple support excitation are the different in some case. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation because the spatial structure supports may be different.

지반변동성을 고려한 액상화 진동전단응력비의 확률론적 해석 (Probabilistic Analysis of Liquefaction Cyclic Stress Ratio Considering Soil Variability)

  • 허준
    • 한국농공학회논문집
    • /
    • 제60권2호
    • /
    • pp.95-101
    • /
    • 2018
  • The objective of this study is to evaluate the liquefaction cyclic shear stress ratio considering the soil uncertainty. In this study, the probabilistic ground response analysis and the cyclic shear stress ratio analysis for the liquefaction potential evaluation are performed considering the soil variability. The statistical properties of input ground parameters were analyzed to investigate the parameters affecting the seismic response analysis. The Probabilistic analysis was carried out by Monte Carlo Simulation method. The ground response analysis was performed considering the soil variability and the probability distribution characteristics of the ground acceleration. The probability distribution of the peak ground acceleration by seismic characteristics was presented. The differences of liquefaction shear stress ratio results according to soil variability were compared and analyzed. The maximum acceleration of the ground by the deterministic method was analyzed to be overestimation of the ground amplification phenomenon. Also, the shear stress ratio was overestimated.

구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - II 지진응답 (Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - II Seismic Response)

  • 하성진;한상환;오장현
    • 한국지진공학회논문집
    • /
    • 제21권4호
    • /
    • pp.181-188
    • /
    • 2017
  • Current seismic design provisions such as ASCE 7-10 provide criteria for selecting ground motions for conducting response history analysis. This study is the sequel of a companion paper (I - Ground Motion Selection) for assessment of the ASCE 7-10 criteria. To assess of the ASCE 7-10 criteria, nonlinear response history analyses of twelve single degree of freedom (SDF) systems and one multi-degree of freedom (MDF) system are conducted in this study. The results show that the target seismic demands for SDF can be predicted using the mean seismic demands over seven and ten ground motions selected according to the proposed method within an error of 30% and 20%, respectively

원거리와 근거리 지진파의 특성을 고려한 항만 컨테이너 크레인의 지진취약도 분석 (Seismic Fragility Analysis of Container Crane Considering Far-Fault and Near-Fault Ground Motion Characteristics)

  • 박주현;민지영;이종한
    • 한국지진공학회논문집
    • /
    • 제27권2호
    • /
    • pp.83-90
    • /
    • 2023
  • The recent increase in earthquake activities has highlighted the importance of seismic performance evaluation for civil infrastructures. In particular, the container crane essential to maintaining the national logistics system with port operation requires an exact evaluation of its seismic response. Thus, this study aims to assess the seismic vulnerability of container cranes considering their seismic characteristics. The seismic response of the container crane should account for the structural members' yielding and buckling, as well as the crane wheel's uplifting derailment in operation. The crane's yielding and buckling limit states were defined using the stress of crane members based on the load and displacement curve obtained from nonlinear static analysis. The derailment limit state was based on the height of the rail, and nonlinear dynamic analysis was performed to obtain the seismic fragility curves considering defined limit states and seismic characteristics. The yield and derailment probabilities of the crane in the near-fault ground motion were approximately 1.5 to 4.7 and 2.8 to 6.8 times higher, respectively, than those in the far-fault ground motion.

근거리 지진에 의한 현수교의 동적응답특성 (Dynamic Response Characteristics of the Suspension Bridge Subjected to Near Fault Ground Motions)

  • 한성호;이강혁;유병률;방명석;신재철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.484-491
    • /
    • 2004
  • In this study, the effect of the Near Fault Ground Motion which hasn't been considered at the domestic seismic design is demonstrated through the seismic response analysis of suspension bridge. After selecting the typical Near and Far Fault Ground Motion, the response characteristics are analysed by conducting the seismic response analysis about the long period suspension bridge which is expected to suffer the effect of Near Fault Ground Motions more largely. According to the results of this study, the Near Fault Ground Motions affect the suspension bridge more considerably than the Far Fault Ground Motions.

  • PDF

Seismic microzonation of Kolkata

  • Shiuly, Amit;Sahu, R.B.;Mandal, Saroj
    • Geomechanics and Engineering
    • /
    • 제9권2호
    • /
    • pp.125-144
    • /
    • 2015
  • This paper presents the probabilistic seismic microzonation of densely populated Kolkata city, situated on the world's largest delta island with very soft alluvial soil deposit. At first probabilistic seismic hazard analysis of Kolkata city was carried out at bedrock level and then ground motion amplification due to sedimentary deposit was computed using one dimensional (1D) wave propagation analysis SHAKE2000. Different maps like fundamental frequency, amplification at fundamental frequency, peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), maximum response spectral acceleration at different time period bands are developed for variety of end users, structural and geotechnical engineers, land use planners, emergency managers and awareness of general public. The probabilistically predicted PGA at bedrock level is 0.12 g for 50% exceedance in 50 years and maximum PGA at surface level it varies from 0.095 g to 0.18 g for same probability of exceedance. The scenario of simulated ground motion revealed that Kolkata city is very much prone to damage during earthquake.