• Title/Summary/Keyword: Segway-type mobile robot

Search Result 4, Processing Time 0.02 seconds

Design of Simple-Structured Fuzzy Logic Systems for Segway-Type Mobile Robot

  • Yoo, Hyun-Ho;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.232-239
    • /
    • 2015
  • Studies on the control of the inverted pendulum type system have been widely reported. This is because it is a typical complex nonlinear system and may be a good model for verifying the performance of a proposed control system. In this paper, we propose the design of some fuzzy logic control (FLC) systems for controlling a Segway-type mobile robot, which is an inverted pendulum type system. We first derive a dynamic model of the Segway-type mobile robot and then analyze it in detail. Next, we propose the design of some FLC systems that have good performance for the control of any nonlinear system. Then, we design two conventional FLC systems for the position and balance control of the Segway-type mobile robot, and we demonstrate their usefulness through simulations. Next, we point out the possibility of simplifying the design process and reducing the computational complexity,, which results from the skew symmetric property of the fuzzy control rule tables. Finally, we design two other FLC systems for position and balance control of the Segway-type mobile robot. These systems have only one input variable in the FLC systems. Furthermore, we observe that they offer similar control performance to that of the conventional two-input FLC systems.

Design of Fuzzy Logic Control System for Segway Type Mobile Robots

  • Kwak, Sangfeel;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a typical complex nonlinear system and may be a good model to verify the performance of a proposed control system. In this paper, we propose the design of two fuzzy logic control systems for the control of a Segway mobile robot which is an inverted pendulum type system. We first introduce a dynamic model of the Segway mobile robot and then analyze the system. We then propose the design of the fuzzy logic control system, which shows good performance for the control of any nonlinear system. In this paper, we here design two fuzzy logic control systems for the position and balance control of the Segway mobile robot. We demonstrate their usefulness through simulation examples. We also note the possibility of simplifying the design process and reducing the computational complexity. This possibility is the result of the skew symmetric property of the fuzzy rule tables of the system.

Reasonable Hardware Design Methods for 2-Wheeled Mobile Robots : Based on Segway Type Mobile Robots (2륜 이동로봇의 합리적인 하드웨어 설계 노하우 : 세그웨이를 중심으로)

  • Joh, Jung-Woo;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.109-111
    • /
    • 2009
  • In this paper, we discuss how to design 2-wheeled mobile robot hard wares as reasonable and practical as possible. A segway type mobile robot consists of 2 wheels only, placed in parallel rather than horizon. 2-wheeled mobile robots make you overcome high cost and time consuming maintenance procedures of the robot by reducing the number of robot hardwares. The most challenging thing in a 2-wheeled mobile robot that has many more valid virtues than the traditional mobile robots is to make it balance itself whenever it stands still or goes forward. But balancing itself is not an easy matter and there are many researches and experiments on this issue. When researchers test theories on 2-wheeled mobile robots to improve its self balancing performance, they should consider how to design hard wares of that mobile robot. No matter how great those new theories are, if a testbed for those theories is not suitable, performance output would be poor and meaningless. In this point of view, to design a proper 2-wheeled mobile robot as a testbed is a very important issue with development of new theories. So we define 4 guide lines to design segway type mobile robots reasonably; about motor, battery, and MCU selection and shock-proof design with robust motor setting.

  • PDF

Neural Network PID Controller for Angle and Speed Control of Two Wheeled Inverted Pendulum Robot (이륜 역진자 로봇의 각도 및 속도 제어를 위한 신경회로망 PID 제어기)

  • Kim, Young-Doo;An, Tae-Hee;Jung, Gun-Oo;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1871-1880
    • /
    • 2011
  • In this paper, a controller for two wheeled inverted pendulum robot, i.e., Segway type robot that is a convenient and easily handled vehicle is designed to have more stable balancing and faster velocity control compared to the conventional method. First, a widely used PID control structure is applied to the two wheeled inverted pendulum robot and proper PID control gains for some specified weights of users are obtained to get accurate balancing and velocity control by use of experimental trial-and-error method. Next, neural network is employed to generate appropriate PID control gains for arbitrarily selected weight. Here the PID gains based on the trial-and-error method are used as training data. Simulation study has been carried out to find that the performance of the designed controller using the neural network is more excellent than the conventional PID controller in terms of faster balancing and velocity control.