• 제목/요약/키워드: Segregation effect

검색결과 233건 처리시간 0.025초

수중에 노출된 농업용 콘크리트 구조물 보수용 라텍스개질 모르타르의 역학적 특성 및 내구성능 평가 (Mechanical and Durability Characteristics of Latex Modified Repair Mortar for Agricultural Underwater Concrete Structure)

  • 원종필;이재영;박찬기;성상경;김완영
    • 한국농공학회논문집
    • /
    • 제49권4호
    • /
    • pp.35-41
    • /
    • 2007
  • The most agricultural concrete structures for the irrigation and drainage are exposed to the underwater condition at the irrigation period and they take the influence on very severe cold in the winter. Therefore, it is impossible to use repair materials used to the general concrete structures. The research need the development of the repair material for a performance enhance of the agricultural underwater concrete structures. This research evaluated the mechanical and durability performance of the latex modified repair mortar for underwater concrete structures which peformed the repair in the underwater according to the characteristic of the agricultural concrete structure. The latex modified repair mortar is a material that minimize the effect of the ecosystem, environment and the segregation. In this research, the construction condition of the latex modified repair mortar for agricultural concrete structures was considered and the test specimens made in the underwater condition. Test results was then compared with target performance and commercial repair mortar. Experimental test results indicated that the mechanical and durability performance of latex modified repair mortar for agricultural underwater concrete structure satisfied all target performance. Also, the latex modified repair mortar resulted in better repair performance than the commercial repair mortar.

급속응고된 Al-Pb-Cu-Mg 합금의 마모특성에 미치는 미세조직의 영향 (Effect of the Microstructrure of Rapidly Solidified Al-Pb-Cu-Mg on the Wear ProPerty)

  • 김홍물
    • 한국분말재료학회지
    • /
    • 제7권1호
    • /
    • pp.12-18
    • /
    • 2000
  • Effects of the microstrucrure of rapidy solidified Al-Pb-Cu-Mg alloys on the wear investigated. In order to overcome the miscility gap between Al and pb under equilibrium conditions, both in the solid and the liquid states, the alloy were rapidy solidifies to produce them in a segregation-free condition. Although the Pb particles showed relatively fine dispersion in the Al matrix in all the alloys by this process. the Al-16Pb alloy was found to have the most favorable microstructure with discretre with discrete Pb particles of abount 0.5 ${\mu}$m in size. With the addition of Cu and Cu-Mg to Al-16Pb, cellular structures were newly formed; not seen in the binary Al-Pb alloy. Wear properties of the Al-Pb binary alloys measured as a function of the sliding speen, sliding distance, and applied load showed that the Al-16Pb alloy has the best wear resistance, as expected from the fine microstructural features in this alloy. The were resistance of the alloy containing Cu-and Cu-Mg was higher than that of the Al-16Pvb alloy, due to matrix strengthening by precipitation hardeing. The wear mechanism was identified by examining the traces and wear debris.

  • PDF

고유동페이스트의 유동특성에 미치는 멜라민계 고성능가수제의 영향 (The Effect of Melamine Sulphonate High-Range Water Reducing Agent to the Fluidity of High-Flowability Paste)

  • 남지현;조은영;오상균;김정길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.71-74
    • /
    • 2005
  • The viscosity of high-flowability paste is very high compared to normal concrete for the low water-binder ratio(W/B). Therefore, high-flowability concrete is positively necessary to high-range water reducing agent. High-Flowability paste can make much higher fluidity with no occurrence of segregation, by its higher viscosity and lower yield value than normal concrete. The flowability of high-flowability paste must be evaluated not only by convention consistency test such as slump test but also by the base of the rheological properties of the fresh concrete. The purpose of this study is to analyze the fluidity of high-flowability paste according to the addition ratio of the Melamine Sulphonate high-range water reducing agent.; high-flowability paste is considered as Bingham plastic fluid with the rheology parameters of the plaste viscosity and yield value.

  • PDF

Human ChlR1 Stimulates Endonuclease Activity of hFen1 Independently of ATPase Activity

  • Kim, Do-Hyung;Kim, Jeong-Hoon;Park, Byoung Chul;Lee, Do Hee;Cho, Sayeon;Park, Sung Goo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.3005-3008
    • /
    • 2014
  • Human ChlR1 protein (hChlR1), a member of the cohesion establishment factor family, plays an important role in the segregation of sister chromatids for maintenance of genome integrity. We previously reported that hChlR1 interacts with hFen1 and stimulates its nuclease activity on the flap-structured DNA substrate covered with RPA. To elucidate the relationship between hChlR1 and Okazaki fragment processing, the effect of hChlR1 on in vitro nuclease activities of hFen1 and hDna2 was examined. Independent of ATPase activity, hChlR1 stimulated endonuclease activity of hFen1 but not that of hDna2. Our findings suggest that the acceleration of Okazaki fragment processing near cohesions may aid in reducing the size of the replication machinery, thereby facilitating its entry through the cohesin ring.

BEHAVIORS OF MOLYBDENUM IN UO2 FUEL MATRIX

  • Ha, Yeong-Keong;Kim, Jong-Goo;Park, Yang-Soon;Park, Soon-Dal;Song, Kyu-Seok
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.309-316
    • /
    • 2011
  • Molybdenum is the most abundant fission product since its fission yield is equivalent to that of xenon, and it has a very special role in the chemistry of nuclear fuel because it influences the oxygen potential of $UO_2$ fuel. In this study, the distribution of molybdenum in spent $UO_2$ fuel specimens with 33.3, 41.0 and 57.6 GWd/tU burnup was measured by a LA-ICP-MS system and the reproducibility of the measured data was obtained. The Mo distribution was almost constant along the radius of a fuel except an increase at the periphery of the fuel. It showed a drop in reproducibility with relatively high deviation of measured values for the highest burnup fuel. To explain this, the state of molybdenum in a $UO_2$ matrix and its effect on the oxidation behavior of $UO_2$ were investigated. The low reproducibility was explained by the segregation of molybdenum, and the inhibition of oxidation by the molybdenum was also observed.

저탄소 보론강의 경화능에 미치는 Mo 및 Cr 함량의 영향 (Influence of Mo and Cr Contents on Hardenability of Low-Carbon Boron Steels)

  • 황병철;서동우
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.555-561
    • /
    • 2013
  • The hardenability of low-carbon boron steels with different molybdenum and chromium contents was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy (SIMS), and then discussed in terms of the segregation and precipitation behaviors of boron. The hardenability was quantitatively evaluated by a critical cooling rate obtained from the hardness distribution plotted as a function of cooling rate. It was found that the molybdenum addition was more effective than the chromium addition to increase the hardenability of boron steels, in contrast to boron-free steels. The addition of 0.2 wt.% molybdenum completely suppressed the formation of eutectoid ferrite, even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.5 wt.% chromium did this at cooling rates above $3^{\circ}C/s$. The SIMS analysis results to observe the boron distribution at the austenite grain boundaries confirmed that the addition of 0.2 wt.% molybdenum effectively increased the hardenability of boron steels, as the boron atoms were significantly segregated to the austenite grain boundaries without the precipitation of borocarbide, thus retarding the austenite-to-ferrite transformation compared to the addition of 0.5 wt.% chromium. On the other hand, the synergistic effect of molybdenum and boron on the hardenability of boron steels could be explained from thermodynamic and kinetic perspectives.

공침법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 분말의 특성 (Properties of Al2O3-15v/o ZrO2(+3m/o Y2O3) Powder Prepared by Co-Precipitation Method)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제26권2호
    • /
    • pp.210-220
    • /
    • 1989
  • The properties of the powder of Al2O3-15v/o ZrO2(+3m/o Y2O3) system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide decreased the specific surface area of aluminum hydroxide of AlOOH type, while increased the specific surface area of aluminum hydroxide of Al(OH)3 type, and formed co-network structure of Al-O-Zr type with the aluminum hydroxides. The rate of transition to $\alpha$-Al2O3 from co-precipitated materials occurred in the order of 7≒10, 9 and 11 of pH values. Al2O3 and ZrO2 interacted to bring about coupled grain growth, and the growth of ZrO2 crystallite size rapidly occurred within $\theta$-Al2O3 matrix. Segregation did not occur in the system Al2O3-15v/o ZrO2(+3m/o Y2O3) and Y2O3 acted as a stabilizer to ZrO2. The lattice strain of tetragonal ZrO2 was increased by the constraint effect of Al2O3 matrix.

  • PDF

합금의 방향성 주조에 대한 미시적-거시적 해석 (Micro-macroscopic analysis on the directional casting of a metal alloy)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1303-1313
    • /
    • 1997
  • A micro-macroscopic analysis on the conduction-controlled directional casting of Al-Cu alloys is performed, in which emphases are placed on the microstructural features. In order to facilitate the solution procedure, an iterative micro-macroscopic coupling algorithm is developed. The predicted results show that the effect of finite back diffusion on the transient solidification process in comparison with the lever rule depends essentially on the initial concentration of an alloy. In the final casting, the eutectic fraction is distributed in an increasing-decreasing-increasing pattern, each mode of which is named the chill, interior and end zones. This nonuniformity per se suffices to justify the necessity of this work because it originates from the combined effects of finite back diffusion and cooling path-dependent nature of the eutectic formation. As the cooling rate is enhanced, not only the influence depths of boundaries narrow, but also the eutectic fractions in the chill and interior zones increase. In addition, it is revealed for the first time that the micro segregation band is formed in response to a sudden change in cooling rate during the directional casting. An increasing change creates an overshooting band in the eutectic fraction distribution, and vice versa.

V2O5 도핑된 NiCuZn 페라이트로 제조된 칩인덕터에서의 Ag/cu 석출 (Ag and Cu Precipitation in Multi-Layer Chip Inductors Prepared with V2O5 Doped NiCuZn Ferrites)

  • 제해준;김병국
    • 한국재료학회지
    • /
    • 제13권8호
    • /
    • pp.503-508
    • /
    • 2003
  • The purpose of this study is to investigate the effect of $V_2$$O_{5}$ addition on the Ag and Cu precipitation in the NiCuZn ferrite layers of 7.7${\times}$4.5${\times}$1.0 mm sized multi-layer chip inductors prepared by the screen printing method using 0∼0.5 wt% $V_2$$O_{5}$ -doped ferrite pastes. With increasing the $V_2$$O_{5}$ content and sintering temperature, Ag and Cu oxide coprecipitated more and more at the polished surface of ferrite layers during re-annealing at $840^{\circ}C$. It was thought that during the sintering process, V dissolved in the NiCuZn ferrite lattice and the Ag-Cu liquid phase of low melting point was formed in the ferrite layers due to the Cu segregation from the ferrite lattice and Ag diffusion from the internal electrode. During re-annealing at $840^{\circ}C$, the Ag-Cu liquid phase came out the polished surface of ferrite layers, and was decomposed into the isolated Ag particles and the Cu oxide phase during the cooling process.

고유동 콘크리트의 품질변동 요인에 관한 연구 (A Study on the factors of Quality variation for High Flowing Concrete in Site)

  • 권영호;이현호;이화진;하재담
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.743-746
    • /
    • 2004
  • This research investigates experimentally an effect on the properties of the high flowing concrete according to variations of concrete materials and site conditions. Variations of sensitivity test are selected items as followings; (1)Concrete temperature, (2)Unit water(Surface moisture of fine aggregate), (3)Fineness modulus of fine aggregate, (4)Addition ratio of high-range water reducing agent. And fresh conditions of the high flowing concrete should be satisfied with required range including slump flow$(65{\pm}5cm)$, 50cm reaching time of slump flow$(4\~10sec)$, V-box flowing time$(10\~20sec)$, U-box height(min.300mm) and air content$(4{\pm}1\%)$. As results of sensitivity test, material variations and site conditions should be satisfied with the range as followings; (1)Concrete temperature is $10\~20^{\circ}C$ (below $30^{\circ}C$), (2)Surface moisture of fine aggregate is within ${\pm}0.6\%$, (3)Fineness modulus of fine aggregate is $2.6{\pm}0.2$ and (4)addition ratio of high range water reducing agent is within $1\%$ considered flow-ability, self-compaction and segregation resistance of the high flowing concrete.

  • PDF